IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29729-z.html
   My bibliography  Save this article

A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize

Author

Listed:
  • Zhibin Chen

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhaogui Zhang

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)

  • Huairen Zhang

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)

  • Kai Li

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Darun Cai

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Li Zhao

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)

  • Juan Liu

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)

  • Huabang Chen

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)

Abstract

Maize unilateral cross-incompatibility (UCI) that causes non-Mendelian segregation ratios has been documented for more than a century. Ga1, Ga2, and Tcb1 are three major UCI systems, described but not fully understood. Here, we report comprehensive genetic studies on the Ga2 locus and map-based cloning of the tightly linked male determinant ZmGa2P and female determinant ZmGa2F that govern pollen-silk compatibility among different maize genotypes. Both determinants encode putative pectin methylesterases (PME). A significantly higher degree of methyl esterification is detected in the apical region of pollen tubes growing in incompatible silks. No direct interaction between ZmGa2P and ZmGa2F is detected in the yeast two-hybrid system implying a distinct mechanism from that of self-incompatibility (SI). We also demonstrate the feasibility of Ga2 as a reproductive barrier in commercial breeding programs and stacking Ga2 with Ga1 could strengthen the UCI market potentials.

Suggested Citation

  • Zhibin Chen & Zhaogui Zhang & Huairen Zhang & Kai Li & Darun Cai & Li Zhao & Juan Liu & Huabang Chen, 2022. "A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29729-z
    DOI: 10.1038/s41467-022-29729-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29729-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29729-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yinping Jiao & Paul Peluso & Jinghua Shi & Tiffany Liang & Michelle C. Stitzer & Bo Wang & Michael S. Campbell & Joshua C. Stein & Xuehong Wei & Chen-Shan Chin & Katherine Guill & Michael Regulski & S, 2017. "Improved maize reference genome with single-molecule technologies," Nature, Nature, vol. 546(7659), pages 524-527, June.
    2. Zhaogui Zhang & Baocai Zhang & Zhibin Chen & Dongmei Zhang & Huairen Zhang & Hang Wang & Yu’e Zhang & Darun Cai & Juan Liu & Senlin Xiao & Yanqing Huo & Jie Liu & Lanjun Zhang & Mingming Wang & Xu Liu, 2018. "A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Yongxian Lu & Samuel A. Hokin & Jerry L. Kermicle & Thomas Hartwig & Mathew M. S. Evans, 2019. "A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Steven G. Thomas & Vernonica E. Franklin-Tong, 2004. "Self-incompatibility triggers programmed cell death in Papaver pollen," Nature, Nature, vol. 429(6989), pages 305-309, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimin You & Zhigang Zhao & Xiaowen Yu & Shanshan Zhu & Jian Wang & Dekun Lei & Jiawu Zhou & Jing Li & Haiyuan Chen & Yanjia Xiao & Weiwei Chen & Qiming Wang & Jiayu Lu & Keyi Chen & Chunlei Zhou & Xi, 2023. "A toxin-antidote system contributes to interspecific reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yuebin Wang & Wenqiang Li & Luxi Wang & Jiali Yan & Gang Lu & Ning Yang & Jieting Xu & Yuqing Wang & Songtao Gui & Gengshen Chen & Shuyan Li & Chengxiu Wu & Tingting Guo & Yingjie Xiao & Marilyn L. Wa, 2022. "Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yuxin Fu & Wenxin Xiao & Lang Tian & Liangxing Guo & Guangjin Ma & Chen Ji & Yongcai Huang & Haihai Wang & Xingguo Wu & Tao Yang & Jiechen Wang & Jirui Wang & Yongrui Wu & Wenqin Wang, 2023. "Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Feng Tong & Teng Wang & Na L. Gao & Ziying Liu & Kuiqing Cui & Yiqian Duan & Sicheng Wu & Yuhong Luo & Zhipeng Li & Chengjian Yang & Yixue Xu & Bo Lin & Liguo Yang & Alfredo Pauciullo & Deshun Shi & G, 2022. "The microbiome of the buffalo digestive tract," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Yixue Bao & Qing Zhang & Jiangfeng Huang & Shengcheng Zhang & Wei Yao & Zehuai Yu & Zuhu Deng & Jiaxin Yu & Weilong Kong & Xikai Yu & Shan Lu & Yibin Wang & Ru Li & Yuhan Song & Chengwu Zou & Yuzhi Xu, 2024. "A chromosomal-scale genome assembly of modern cultivated hybrid sugarcane provides insights into origination and evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Gabriel E. Rech & Santiago Radío & Sara Guirao-Rico & Laura Aguilera & Vivien Horvath & Llewellyn Green & Hannah Lindstadt & Véronique Jamilloux & Hadi Quesneville & Josefa González, 2022. "Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Jessen V. Bredeson & Jessica B. Lyons & Ibukun O. Oniyinde & Nneka R. Okereke & Olufisayo Kolade & Ikenna Nnabue & Christian O. Nwadili & Eva Hřibová & Matthew Parker & Jeremiah Nwogha & Shengqiang Sh, 2022. "Chromosome evolution and the genetic basis of agronomically important traits in greater yam," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Yibing Zeng & Julian Somers & Harrison S. Bell & Zuzana Vejlupkova & R. Kelly Dawe & John E. Fowler & Brad Nelms & Jonathan I. Gent, 2024. "Potent pollen gene regulation by DNA glycosylases in maize," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29729-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.