IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i8d10.1007_s11269-022-03175-4.html
   My bibliography  Save this article

Design of a Control System Using an Artificial Neural Network to Optimize the Energy Efficiency of Water Distribution Systems

Author

Listed:
  • Laís Régis Salvino

    (Federal University of Paraiba)

  • Heber Pimentel Gomes

    (Federal University of Paraiba)

  • Saulo de Tarso Marques Bezerra

    (Federal University of Pernambuco)

Abstract

Sustainable management of water supply systems is a major challenge within the framework of the water-energy nexus. The main strategies to improve the operation of these systems are related to increasing the hydraulic and energy efficiency of pumping systems. In this context, this work presents a new artificial neural network (ANN) controller to improve the operation of water distribution systems (WDSs) that includes in its algorithm the specific energy consumption (SEC) as a decision parameter. Therefore, pressure control at the measuring points is also based on the energy efficiency of the pumps. The technique was applied to control the pressures in an experimental setup that emulates a WDS with two consumption zones with different topographies. For this purpose, the controller acted on a conventional pump, a booster pump and a control valve. To analyze the performance under the controller action, tests were performed emulating water-demand scenarios, introducing perturbations and changing the pressure setpoints. The real-time control performance was proven based on the dynamic performance, steady-state performance and SEC. The experimental results showed that the proposed controller kept the pressures close to the setpoints and provided a reduction in the SEC between 15.1% and 17.8%, compared with the uncontrolled system, and an economy that varied from 2.5% to 8.1% compared with the performance of the ANN based only on pressure control.

Suggested Citation

  • Laís Régis Salvino & Heber Pimentel Gomes & Saulo de Tarso Marques Bezerra, 2022. "Design of a Control System Using an Artificial Neural Network to Optimize the Energy Efficiency of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2779-2793, June.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:8:d:10.1007_s11269-022-03175-4
    DOI: 10.1007/s11269-022-03175-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03175-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03175-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    2. S. Vijay & K. Kamaraj, 2021. "Prediction of Water Quality Index in Drinking Water Distribution System Using Activation Functions Based Ann," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 535-553, January.
    3. Zening Wu & Bingyan Ma & Huiliang Wang & Caihong Hu & Hong Lv & Xiangyang Zhang, 2021. "Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2115-2128, May.
    4. Ben Scheres & Wim H. van der Putten, 2017. "The plant perceptron connects environment to development," Nature, Nature, vol. 543(7645), pages 337-345, March.
    5. Elnaz Sharghi & Vahid Nourani & Hessam Najafi & Amir Molajou, 2018. "Emotional ANN (EANN) and Wavelet-ANN (WANN) Approaches for Markovian and Seasonal Based Modeling of Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3441-3456, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sooyeon Yi & G. Mathias Kondolf & Samuel Sandoval-Solis & Larry Dale, 2022. "Application of Machine Learning-based Energy Use Forecasting for Inter-basin Water Transfer Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5675-5694, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Wang & Wenchong Tian & Zhenliang Liao, 2022. "Framework for Hyperparameter Impact Analysis and Selection for Water Resources Feedforward Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4201-4217, September.
    2. Zehai Gao & Yang Liu & Nan Li & Kangjie Ma, 2022. "An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2685-2702, June.
    3. Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
    4. Solomon Peter Wante & David W. M. Leung & Hossein Alizadeh, 2024. "Varying Tolerance to Diesel Toxicity Revealed by Growth Response Evaluation of Petunia grandiflora Shoot Lines Regenerated after Diesel Fuel Treatment," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    5. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    6. Meysam Ghamariadyan & Monzur A. Imteaz, 2021. "Prediction of Seasonal Rainfall with One-year Lead Time Using Climate Indices: A Wavelet Neural Network Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5347-5365, December.
    7. Mojtaba Kadkhodazadeh & Saeed Farzin, 2021. "A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3939-3968, September.
    8. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    9. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    10. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Parvin Golfam & Parisa-Sadat Ashofteh, 2022. "Performance Indexes Analysis of the Reservoir-Hydropower Plant System Affected by Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5127-5162, October.
    12. Chao Liu & Mingshuang Xu & Yufeng Liu & Xuefei Li & Zonglin Pang & Sheng Miao, 2022. "Predicting Groundwater Indicator Concentration Based on Long Short-Term Memory Neural Network: A Case Study," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    13. Vahid Nourani & Nardin Jabbarian Paknezhad & Hitoshi Tanaka, 2021. "Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-Based Modeling of the Hydro-Climatic Processes, a Review," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    14. Monika Kulisz & Justyna Kujawska & Bartosz Przysucha & Wojciech Cel, 2021. "Forecasting Water Quality Index in Groundwater Using Artificial Neural Network," Energies, MDPI, vol. 14(18), pages 1-17, September.
    15. Bartosz Szeląg & Roman Suligowski & Grzegorz Majewski & Przemysław Kowal & Adrian Bralewski & Karolina Bralewska & Ewa Anioł & Wioletta Rogula-Kozłowska & Francesco Paola, 2022. "Application of Multinomial Logistic Regression to Model the Impact of Rainfall Genesis on the Performance of Storm Overflows: Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3699-3714, August.
    16. Yuxin Zhu & Jianzhong Zhou & Yongchuan Zhang & Zhiqiang Jiang & Benjun Jia & Wei Fang, 2022. "Optimal Energy Storage Operation Chart and Output Distribution of Cascade Reservoirs Based on Operating Rules Derivation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5751-5766, November.
    17. Wongchai Anupong & Muhsin Jaber Jweeg & Sameer Alani & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Comparison of Wavelet Artificial Neural Network, Wavelet Support Vector Machine, and Adaptive Neuro-Fuzzy Inference System Methods in Estimating Total Solar Radiation in Iraq," Energies, MDPI, vol. 16(2), pages 1-14, January.
    18. Fatemeh Yavari & Seyyed Ali Salehi Neyshabouri & Jafar Yazdi & Amir Molajou & Adam Brysiewicz, 2022. "A Novel Framework for Urban Flood damage Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1991-2011, April.
    19. Salem Gharbia & Khurram Riaz & Iulia Anton & Gabor Makrai & Laurence Gill & Leo Creedon & Marion McAfee & Paul Johnston & Francesco Pilla, 2022. "Hybrid Data-Driven Models for Hydrological Simulation and Projection on the Catchment Scale," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    20. Hu Caihong & Zhang Xueli & Li Changqing & Liu Chengshuai & Wang Jinxing & Jian Shengqi, 2022. "Real-time Flood Classification Forecasting Based on k-means++ Clustering and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 103-117, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:8:d:10.1007_s11269-022-03175-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.