IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56404-w.html
   My bibliography  Save this article

Force-bearing phagocytic adhesion rings mediate the phagocytosis of surface-bound particles

Author

Listed:
  • Subhankar Kundu

    (University of Cincinnati)

  • Kaushik Pal

    (Indian Institute of Technology Tirupati)

  • Arghajit Pyne

    (University of Cincinnati)

  • Xuefeng Wang

    (University of Cincinnati)

Abstract

Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β2 integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles. These circular adhesion structures that we named phagocytic adhesion rings (PARs) serve as strongholds to support local ring-shaped actin structures constricting into the particle-substrate cleavages, thereby pinching off the particles from the substrate. During this process, integrins in PARs sustain tensions due to the reaction force of actin polymerization against the particles. Such tensions are critical for phagocytic efficiency of surface-bound particles. PARs were formed in all tested macrophages (mouse, human and fish) and micron-sized particles (microbeads and E. coli), demonstrating their conserved role in the phagocytosis. This study reveals a mechanism of PAR-mediated phagocytosis, specialized for the detachment and internalization of surface-bound particles.

Suggested Citation

  • Subhankar Kundu & Kaushik Pal & Arghajit Pyne & Xuefeng Wang, 2025. "Force-bearing phagocytic adhesion rings mediate the phagocytosis of surface-bound particles," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56404-w
    DOI: 10.1038/s41467-025-56404-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56404-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56404-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56404-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.