IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26611-2.html
   My bibliography  Save this article

Extent of myosin penetration within the actin cortex regulates cell surface mechanics

Author

Listed:
  • Binh An Truong Quang

    (University College London)

  • Ruby Peters

    (University of Cambridge)

  • Davide A. D. Cassani

    (University College London)

  • Priyamvada Chugh

    (University College London)

  • Andrew G. Clark

    (University College London
    University of Stuttgart, Institute of Cell Biology and Immunology)

  • Meghan Agnew

    (University College London)

  • Guillaume Charras

    (University College London
    University College London)

  • Ewa K. Paluch

    (University College London
    University of Cambridge)

Abstract

In animal cells, shape is mostly determined by the actomyosin cortex, a thin cytoskeletal network underlying the plasma membrane. Myosin motors generate tension in the cortex, and tension gradients result in cellular deformations. As such, many cell morphogenesis studies have focused on the mechanisms controlling myosin activity and recruitment to the cortex. Here, we demonstrate using super-resolution microscopy that myosin does not always overlap with actin at the cortex, but remains restricted towards the cytoplasm in cells with low cortex tension. We propose that this restricted penetration results from steric hindrance, as myosin minifilaments are considerably larger than the cortical actin meshsize. We identify myosin activity and actin network architecture as key regulators of myosin penetration into the cortex, and show that increasing myosin penetration increases cortical tension. Our study reveals that the spatial coordination of myosin and actin at the cortex regulates cell surface mechanics, and unveils an important mechanism whereby myosin size controls its action by limiting minifilament penetration into the cortical actin network. More generally, our findings suggest that protein size could regulate function in dense cytoskeletal structures.

Suggested Citation

  • Binh An Truong Quang & Ruby Peters & Davide A. D. Cassani & Priyamvada Chugh & Andrew G. Clark & Meghan Agnew & Guillaume Charras & Ewa K. Paluch, 2021. "Extent of myosin penetration within the actin cortex regulates cell surface mechanics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26611-2
    DOI: 10.1038/s41467-021-26611-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26611-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26611-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mirjam Mayer & Martin Depken & Justin S. Bois & Frank Jülicher & Stephan W. Grill, 2010. "Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows," Nature, Nature, vol. 467(7315), pages 617-621, September.
    2. B. J. Nolen & N. Tomasevic & A. Russell & D. W. Pierce & Z. Jia & C. D. McCormick & J. Hartman & R. Sakowicz & T. D. Pollard, 2009. "Characterization of two classes of small molecule inhibitors of Arp2/3 complex," Nature, Nature, vol. 460(7258), pages 1031-1034, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Rou Hsu & Gaganpreet Sangha & Wayne Fan & Joey Zheng & Kenji Sugioka, 2023. "Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Sorosh Amiri & Camelia Muresan & Xingbo Shang & Clotilde Huet-Calderwood & Martin A. Schwartz & David A. Calderwood & Michael Murrell, 2023. "Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26611-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.