IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52899-x.html
   My bibliography  Save this article

Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue

Author

Listed:
  • Tianchi Chen

    (Université Bordeaux, CNRS, UMR 5297)

  • Cecilia H. Fernández-Espartero

    (University of Cambridge
    Universidad de Sevilla)

  • Abigail Illand

    (Université Paris Saclay, CNRS, UMR8214)

  • Ching-Ting Tsai

    (Stanford University)

  • Yang Yang

    (Stanford University)

  • Benjamin Klapholz

    (University of Cambridge)

  • Pierre Jouchet

    (Université Paris Saclay, CNRS, UMR8214)

  • Mélanie Fabre

    (Université Bordeaux, CNRS, UMR 5297)

  • Olivier Rossier

    (Université Bordeaux, CNRS, UMR 5297)

  • Bianxiao Cui

    (Stanford University)

  • Sandrine Lévêque-Fort

    (Université Paris Saclay, CNRS, UMR8214)

  • Nicholas H. Brown

    (University of Cambridge)

  • Grégory Giannone

    (Université Bordeaux, CNRS, UMR 5297)

Abstract

Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.

Suggested Citation

  • Tianchi Chen & Cecilia H. Fernández-Espartero & Abigail Illand & Ching-Ting Tsai & Yang Yang & Benjamin Klapholz & Pierre Jouchet & Mélanie Fabre & Olivier Rossier & Bianxiao Cui & Sandrine Lévêque-Fo, 2024. "Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52899-x
    DOI: 10.1038/s41467-024-52899-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52899-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52899-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pontus Nordenfelt & Hunter L. Elliott & Timothy A. Springer, 2016. "Coordinated integrin activation by actin-dependent force during T-cell migration," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
    2. Timo Kuhn & Amit N. Landge & David Mörsdorf & Jonas Coßmann & Johanna Gerstenecker & Daniel Čapek & Patrick Müller & J. Christof M. Gebhardt, 2022. "Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Anne Reversat & Florian Gaertner & Jack Merrin & Julian Stopp & Saren Tasciyan & Juan Aguilera & Ingrid Vries & Robert Hauschild & Miroslav Hons & Matthieu Piel & Andrew Callan-Jones & Raphael Voituri, 2020. "Cellular locomotion using environmental topography," Nature, Nature, vol. 582(7813), pages 582-585, June.
    4. Matthew J. Paszek & Christopher C. DuFort & Olivier Rossier & Russell Bainer & Janna K. Mouw & Kamil Godula & Jason E. Hudak & Jonathon N. Lakins & Amanda C. Wijekoon & Luke Cassereau & Matthew G. Rub, 2014. "The cancer glycocalyx mechanically primes integrin-mediated growth and survival," Nature, Nature, vol. 511(7509), pages 319-325, July.
    5. Roger Oria & Tina Wiegand & Jorge Escribano & Alberto Elosegui-Artola & Juan Jose Uriarte & Cristian Moreno-Pulido & Ilia Platzman & Pietro Delcanale & Lorenzo Albertazzi & Daniel Navajas & Xavier Tre, 2017. "Force loading explains spatial sensing of ligands by cells," Nature, Nature, vol. 552(7684), pages 219-224, December.
    6. Benedict J. Reynwar & Gregoria Illya & Vagelis A. Harmandaris & Martin M. Müller & Kurt Kremer & Markus Deserno, 2007. "Aggregation and vesiculation of membrane proteins by curvature-mediated interactions," Nature, Nature, vol. 447(7143), pages 461-464, May.
    7. Aki Stubb & Camilo Guzmán & Elisa Närvä & Jesse Aaron & Teng-Leong Chew & Markku Saari & Mitro Miihkinen & Guillaume Jacquemet & Johanna Ivaska, 2019. "Superresolution architecture of cornerstone focal adhesions in human pluripotent stem cells," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    8. Pakorn Kanchanawong & Gleb Shtengel & Ana M. Pasapera & Ericka B. Ramko & Michael W. Davidson & Harald F. Hess & Clare M. Waterman, 2010. "Nanoscale architecture of integrin-based cell adhesions," Nature, Nature, vol. 468(7323), pages 580-584, November.
    9. Anna Labernadie & Anaïs Bouissou & Patrick Delobelle & Stéphanie Balor & Raphael Voituriez & Amsha Proag & Isabelle Fourquaux & Christophe Thibault & Christophe Vieu & Renaud Poincloux & Guillaume M. , 2014. "Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reena Kumari & Katharina Ven & Megan Chastney & Shrikant B. Kokate & Johan Peränen & Jesse Aaron & Konstantin Kogan & Leonardo Almeida-Souza & Elena Kremneva & Renaud Poincloux & Teng-Leong Chew & Pet, 2024. "Focal adhesions contain three specialized actin nanoscale layers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. J. Cody Herron & Shiqiong Hu & Takashi Watanabe & Ana T. Nogueira & Bei Liu & Megan E. Kern & Jesse Aaron & Aaron Taylor & Michael Pablo & Teng-Leong Chew & Timothy C. Elston & Klaus M. Hahn, 2022. "Actin nano-architecture of phagocytic podosomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Haoqing Jerry Wang & Yao Wang & Seyed Sajad Mirjavadi & Tomas Andersen & Laura Moldovan & Parham Vatankhah & Blake Russell & Jasmine Jin & Zijing Zhou & Qing Li & Charles D. Cox & Qian Peter Su & Lini, 2024. "Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Raluca Groza & Kita Valerie Schmidt & Paul Markus Müller & Paolo Ronchi & Claire Schlack-Leigers & Ursula Neu & Dmytro Puchkov & Rumiana Dimova & Claudia Matthaeus & Justin Taraska & Thomas R. Weikl &, 2024. "Adhesion energy controls lipid binding-mediated endocytosis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Chao Jiang & Hong-Yu Luo & Xinpeng Xu & Shuo-Xing Dou & Wei Li & Dongshi Guan & Fangfu Ye & Xiaosong Chen & Ming Guo & Peng-Ye Wang & Hui Li, 2023. "Switch of cell migration modes orchestrated by changes of three-dimensional lamellipodium structure and intracellular diffusion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Xiaoyu Shi & Galo Garcia III & Yina Wang & Jeremy F Reiter & Bo Huang, 2019. "Deformed alignment of super-resolution images for semi-flexible structures," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-12, March.
    7. Yining Jiang & Batiste Thienpont & Vinay Sapuru & Richard K. Hite & Jeremy S. Dittman & James N. Sturgis & Simon Scheuring, 2022. "Membrane-mediated protein interactions drive membrane protein organization," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Sawako Yamashiro & David M. Rutkowski & Kelli Ann Lynch & Ying Liu & Dimitrios Vavylonis & Naoki Watanabe, 2023. "Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Weimin Li & Angdi Li & Bing Yu & Xiaoxiao Zhang & Xiaoyan Liu & Kate L. White & Raymond C. Stevens & Wolfgang Baumeister & Andrej Sali & Marion Jasnin & Liping Sun, 2024. "In situ structure of actin remodeling during glucose-stimulated insulin secretion using cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Thomas Litschel & Charlotte F. Kelley & Xiaohang Cheng & Leon Babl & Naoko Mizuno & Lindsay B. Case & Petra Schwille, 2024. "Membrane-induced 2D phase separation of the focal adhesion protein talin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Ze Gong & Koen Dries & Rodrigo A. Migueles-Ramírez & Paul W. Wiseman & Alessandra Cambi & Vivek B. Shenoy, 2023. "Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Serena Petracchini & Daniel Hamaoui & Anne Doye & Atef Asnacios & Florian Fage & Elisa Vitiello & Martial Balland & Sebastien Janel & Frank Lafont & Mukund Gupta & Benoit Ladoux & Jerôme Gilleron & Te, 2022. "Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    13. Venkat R. Chirasani & Mohammad Ashhar I. Khan & Juilee N. Malavade & Nikolay V. Dokholyan & Brenton D. Hoffman & Sharon L. Campbell, 2023. "Molecular basis and cellular functions of vinculin-actin directional catch bonding," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Matthew R. Pawlak & Adam T. Smiley & Maria Paz Ramirez & Marcus D. Kelly & Ghaidan A. Shamsan & Sarah M. Anderson & Branden A. Smeester & David A. Largaespada & David J. Odde & Wendy R. Gordon, 2023. "RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Arventh Velusamy & Radhika Sharma & Sk Aysha Rashid & Hiroaki Ogasawara & Khalid Salaita, 2024. "DNA mechanocapsules for programmable piconewton responsive drug delivery," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Markus Haake & Beatrice Haack & Tina Schäfer & Patrick N. Harter & Greta Mattavelli & Patrick Eiring & Neha Vashist & Florian Wedekink & Sabrina Genssler & Birgitt Fischer & Julia Dahlhoff & Fatemeh M, 2023. "Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Cecile O Mejean & Andrew W Schaefer & Kenneth B Buck & Holger Kress & Alla Shundrovsky & Jason W Merrill & Eric R Dufresne & Paul Forscher, 2013. "Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    18. Myung Hyun Jo & Jing Li & Valentin Jaumouillé & Yuxin Hao & Jessica Coppola & Jiabin Yan & Clare M. Waterman & Timothy A. Springer & Taekjip Ha, 2022. "Single-molecule characterization of subtype-specific β1 integrin mechanics," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Ronald Springer & Alexander Zielinski & Catharina Pleschka & Bernd Hoffmann & Rudolf Merkel, 2019. "Unbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    20. Marion Jasnin & Jordan Hervy & Stéphanie Balor & Anaïs Bouissou & Amsha Proag & Raphaël Voituriez & Jonathan Schneider & Thomas Mangeat & Isabelle Maridonneau-Parini & Wolfgang Baumeister & Serge Dmit, 2022. "Elasticity of podosome actin networks produces nanonewton protrusive forces," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52899-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.