IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0212735.html
   My bibliography  Save this article

Deformed alignment of super-resolution images for semi-flexible structures

Author

Listed:
  • Xiaoyu Shi
  • Galo Garcia III
  • Yina Wang
  • Jeremy F Reiter
  • Bo Huang

Abstract

Due to low labeling efficiency and structural heterogeneity in fluorescence-based single-molecule localization microscopy (SMLM), image alignment and quantitative analysis is often required to make accurate conclusions on the spatial relationships between proteins. Cryo-electron microscopy (EM) image alignment procedures have been applied to average structures taken with super-resolution microscopy. However, unlike cryo-EM, the much larger cellular structures analyzed by super-resolution microscopy are often heterogeneous, resulting in misalignment. And the light-microscopy image library is much smaller, which makes classification challenging. To overcome these two challenges, we developed a method to deform semi-flexible ring-shaped structures and then align the 3D structures without classification. These algorithms can register semi-flexible structures with an accuracy of several nanometers in short computation time and with greatly reduced memory requirements. We demonstrated our methods by aligning experimental Stochastic Optical Reconstruction Microscopy (STORM) images of ciliary distal appendages and simulated structures. Symmetries, dimensions, and locations of protein complexes in 3D are revealed by the alignment and averaging for heterogeneous, tilted, and under-labeled structures.

Suggested Citation

  • Xiaoyu Shi & Galo Garcia III & Yina Wang & Jeremy F Reiter & Bo Huang, 2019. "Deformed alignment of super-resolution images for semi-flexible structures," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-12, March.
  • Handle: RePEc:plo:pone00:0212735
    DOI: 10.1371/journal.pone.0212735
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212735
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212735&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0212735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pakorn Kanchanawong & Gleb Shtengel & Ana M. Pasapera & Ericka B. Ramko & Michael W. Davidson & Harald F. Hess & Clare M. Waterman, 2010. "Nanoscale architecture of integrin-based cell adhesions," Nature, Nature, vol. 468(7323), pages 580-584, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ZhengQiang Xiong & Qiuze Yu & Tao Sun & Wen Chen & Yuhao Wu & Jie Yin, 2020. "Super-resolution reconstruction of real infrared images acquired with unmanned aerial vehicle," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sawako Yamashiro & David M. Rutkowski & Kelli Ann Lynch & Ying Liu & Dimitrios Vavylonis & Naoki Watanabe, 2023. "Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Weimin Li & Angdi Li & Bing Yu & Xiaoxiao Zhang & Xiaoyan Liu & Kate L. White & Raymond C. Stevens & Wolfgang Baumeister & Andrej Sali & Marion Jasnin & Liping Sun, 2024. "In situ structure of actin remodeling during glucose-stimulated insulin secretion using cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Thomas Litschel & Charlotte F. Kelley & Xiaohang Cheng & Leon Babl & Naoko Mizuno & Lindsay B. Case & Petra Schwille, 2024. "Membrane-induced 2D phase separation of the focal adhesion protein talin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Venkat R. Chirasani & Mohammad Ashhar I. Khan & Juilee N. Malavade & Nikolay V. Dokholyan & Brenton D. Hoffman & Sharon L. Campbell, 2023. "Molecular basis and cellular functions of vinculin-actin directional catch bonding," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Cecile O Mejean & Andrew W Schaefer & Kenneth B Buck & Holger Kress & Alla Shundrovsky & Jason W Merrill & Eric R Dufresne & Paul Forscher, 2013. "Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    6. Reena Kumari & Katharina Ven & Megan Chastney & Shrikant B. Kokate & Johan Peränen & Jesse Aaron & Konstantin Kogan & Leonardo Almeida-Souza & Elena Kremneva & Renaud Poincloux & Teng-Leong Chew & Pet, 2024. "Focal adhesions contain three specialized actin nanoscale layers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Ronald Springer & Alexander Zielinski & Catharina Pleschka & Bernd Hoffmann & Rudolf Merkel, 2019. "Unbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    8. Tianchi Chen & Cecilia H. Fernández-Espartero & Abigail Illand & Ching-Ting Tsai & Yang Yang & Benjamin Klapholz & Pierre Jouchet & Mélanie Fabre & Olivier Rossier & Bianxiao Cui & Sandrine Lévêque-Fo, 2024. "Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. J. Cody Herron & Shiqiong Hu & Takashi Watanabe & Ana T. Nogueira & Bei Liu & Megan E. Kern & Jesse Aaron & Aaron Taylor & Michael Pablo & Teng-Leong Chew & Timothy C. Elston & Klaus M. Hahn, 2022. "Actin nano-architecture of phagocytic podosomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Alex M Valm & Rudolf Oldenbourg & Gary G Borisy, 2016. "Multiplexed Spectral Imaging of 120 Different Fluorescent Labels," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-17, July.
    11. Jin-Sung Park & Il-Buem Lee & Hyeon-Min Moon & Seok-Cheol Hong & Minhaeng Cho, 2023. "Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0212735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.