IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56274-2.html
   My bibliography  Save this article

Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South

Author

Listed:
  • Xinran Qiu

    (Peking University)

  • Maodian Liu

    (Peking University
    Yale University
    Peking University)

  • Yuanzheng Zhang

    (Peking University)

  • Qianru Zhang

    (Duke University)

  • Huiming Lin

    (Peking University)

  • Xingrui Cai

    (Peking University)

  • Jin Li

    (Peking University)

  • Rong Dai

    (Peking University)

  • Shuxiu Zheng

    (Peking University)

  • Jinghang Wang

    (Peking University)

  • Yaqi Zhu

    (Peking University)

  • Huizhong Shen

    (Southern University of Science and Technology
    Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area)

  • Guofeng Shen

    (Peking University
    Peking University)

  • Xuejun Wang

    (Peking University
    Peking University)

  • Shu Tao

    (Peking University
    Peking University)

Abstract

Human activities have emitted substantial mercury into the atmosphere, significantly impacting ecosystems and human health worldwide. Currently, consistent methodologies to evaluate long-term mercury emissions across countries and industries are scant, hindering efforts to prioritize emission controls. Here, we develop a high-spatiotemporal-resolution dataset to comprehensively analyze global anthropogenic mercury emission patterns. We show that global emissions increased 330% during 1960–2021, with declines in developed Global North countries since the 1990s and China since the 2010s completely offset by rapid growth in Global South countries (excluding China). Consequently, global emissions have continued to rise slightly since the 2013 Minamata Convention. In 2021, Global South countries produced two-thirds of global emissions, despite comprising only one-fifth of the global economy. We predict that, although large uncertainties exist, continued emission growth in Global South countries under a business-as-usual scenario could increase 10%-50% global mercury emissions by 2030. Our findings demonstrate that global control of anthropogenic mercury emissions has reached a critical juncture, highlighting the urgent need to target reductions in Global South countries to prevent worsening health and environmental impacts.

Suggested Citation

  • Xinran Qiu & Maodian Liu & Yuanzheng Zhang & Qianru Zhang & Huiming Lin & Xingrui Cai & Jin Li & Rong Dai & Shuxiu Zheng & Jinghang Wang & Yaqi Zhu & Huizhong Shen & Guofeng Shen & Xuejun Wang & Shu T, 2025. "Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56274-2
    DOI: 10.1038/s41467-025-56274-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56274-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56274-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tengfei Yuan & Shaojian Huang & Peng Zhang & Zhengcheng Song & Jun Ge & Xin Miao & Yujuan Wang & Qiaotong Pang & Dong Peng & Peipei Wu & Junjiong Shao & Peipei Zhang & Yabo Wang & Hongyan Guo & Weidon, 2024. "Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Joshua D. Landis & Daniel Obrist & Jun Zhou & Carl E. Renshaw & William H. McDowell & Christopher J. Nytch & Marisa C. Palucis & Joanmarie Vecchio & Fernando Montano Lopez & Vivien F. Taylor, 2024. "Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Kevin Schaefer & Yasin Elshorbany & Elchin Jafarov & Paul F. Schuster & Robert G. Striegl & Kimberly P. Wickland & Elsie M. Sunderland, 2020. "Potential impacts of mercury released from thawing permafrost," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. Beatriz Ferreira Araujo & Stefan Osterwalder & Natalie Szponar & Domenica Lee & Mariia V. Petrova & Jakob Boyd Pernov & Shaddy Ahmed & Lars-Eric Heimbürger-Boavida & Laure Laffont & Roman Teisserenc &, 2022. "Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. B. H. Samset & J. S. Fuglestvedt & M. T. Lund, 2020. "Delayed emergence of a global temperature response after emission mitigation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Emily Seelen & Van Liem-Nguyen & Urban Wünsch & Zofia Baumann & Robert Mason & Ulf Skyllberg & Erik Björn, 2023. "Dissolved organic matter thiol concentrations determine methylmercury bioavailability across the terrestrial-marine aquatic continuum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    8. Fange Yue & Hélène Angot & Byron Blomquist & Julia Schmale & Clara J. M. Hoppe & Ruibo Lei & Matthew D. Shupe & Liyang Zhan & Jian Ren & Hailong Liu & Ivo Beck & Dean Howard & Tuija Jokinen & Tiia Lau, 2023. "The Marginal Ice Zone as a dominant source region of atmospheric mercury during central Arctic summertime," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Paul Picciano & Minghao Qiu & Sebastian D. Eastham & Mei Yuan & John Reilly & Noelle E. Selin, 2023. "Air quality related equity implications of U.S. decarbonization policy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Fekete, Hanna & Kuramochi, Takeshi & Roelfsema, Mark & Elzen, Michel den & Forsell, Nicklas & Höhne, Niklas & Luna, Lisa & Hans, Frederic & Sterl, Sebastian & Olivier, Jos & van Soest, Heleen & Frank,, 2021. "A review of successful climate change mitigation policies in major emitting economies and the potential of global replication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. David Kocman & Simon J. Wilson & Helen M. Amos & Kevin H. Telmer & Frits Steenhuisen & Elsie M. Sunderland & Robert P. Mason & Peter Outridge & Milena Horvat, 2017. "Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments," IJERPH, MDPI, vol. 14(2), pages 1, February.
    12. Long Chen & Sai Liang & Maodian Liu & Yujun Yi & Zhifu Mi & Yanxu Zhang & Yumeng Li & Jianchuan Qi & Jing Meng & Xi Tang & Haoran Zhang & Yindong Tong & Wei Zhang & Xuejun Wang & Jiong Shu & Zhifeng Y, 2019. "Trans-provincial health impacts of atmospheric mercury emissions in China," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    13. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaojian Huang & Tengfei Yuan & Zhengcheng Song & Ruirong Chang & Dong Peng & Peng Zhang & Ling Li & Peipei Wu & Guiyao Zhou & Fange Yue & Zhouqing Xie & Feiyue Wang & Yanxu Zhang, 2025. "Oceanic evasion fuels Arctic summertime rebound of atmospheric mercury and drives transport to Arctic terrestrial ecosystems," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Hailong Li & Fanyue Meng & Penglin Zhu & Hongxiao Zu & Zequn Yang & Wenqi Qu & Jianping Yang, 2024. "Biomimetic mercury immobilization by selenium functionalized polyphenylene sulfide fabric," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    4. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    5. Qinyuan Hong & Haomiao Xu & Xiaoming Sun & Jiaxing Li & Wenjun Huang & Zan Qu & Lizhi Zhang & Naiqiang Yan, 2024. "In-situ low-temperature sulfur CVD on metal sulfides with SO2 to realize self-sustained adsorption of mercury," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Wang Chang & Yun Zhu & Che-Jen Lin & Saravanan Arunachalam & Shuxiao Wang & Jia Xing & Tingting Fang & Shicheng Long & Jinying Li & Geng Chen, 2022. "Environmental Justice Assessment of Fine Particles, Ozone, and Mercury over the Pearl River Delta Region, China," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    7. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    8. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    9. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    10. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    11. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    12. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    13. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    14. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    15. Sichen Tao & Yifei Yang & Ruihan Zhao & Hiroyoshi Todo & Zheng Tang, 2024. "Competitive Elimination Improved Differential Evolution for Wind Farm Layout Optimization Problems," Mathematics, MDPI, vol. 12(23), pages 1-24, November.
    16. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    17. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Liu, Chengyun & Su, Kun & Zhang, Miaomiao, 2021. "Water disclosure and financial reporting quality for social changes: Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Song, Malin & Du, Juntao & Tan, Kim Hua, 2018. "Impact of fiscal decentralization on green total factor productivity," International Journal of Production Economics, Elsevier, vol. 205(C), pages 359-367.
    20. Qinren Shi & Bo Zheng & Yixuan Zheng & Dan Tong & Yang Liu & Hanchen Ma & Chaopeng Hong & Guannan Geng & Dabo Guan & Kebin He & Qiang Zhang, 2022. "Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-2020," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56274-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.