IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47725-3.html
   My bibliography  Save this article

In-situ low-temperature sulfur CVD on metal sulfides with SO2 to realize self-sustained adsorption of mercury

Author

Listed:
  • Qinyuan Hong

    (Shanghai Jiao Tong University)

  • Haomiao Xu

    (Shanghai Jiao Tong University)

  • Xiaoming Sun

    (Shanghai Jiao Tong University)

  • Jiaxing Li

    (Shanghai Jiao Tong University)

  • Wenjun Huang

    (Shanghai Jiao Tong University)

  • Zan Qu

    (Shanghai Jiao Tong University
    Shanghai Institute of Pollution Control and Ecological Security)

  • Lizhi Zhang

    (Shanghai Jiao Tong University
    Central China Normal University)

  • Naiqiang Yan

    (Shanghai Jiao Tong University
    Shanghai Institute of Pollution Control and Ecological Security)

Abstract

Capturing gaseous mercury (Hg0) from sulfur dioxide (SO2)-containing flue gases remains a common yet persistently challenge. Here we introduce a low-temperature sulfur chemical vapor deposition (S-CVD) technique that effectively converts SO2, with intermittently introduced H2S, into deposited sulfur (Sd0) on metal sulfides (MS), facilitating self-sustained adsorption of Hg0. ZnS, as a representative MS model, undergoes a decrease in the coordination number of Zn–S from 3.9 to 3.5 after Sd0 deposition, accompanied by the generation of unsaturated-coordinated polysulfide species (Sn2–, named Sd*) with significantly enhanced Hg0 adsorption performance. Surprisingly, the adsorption product, HgS (ZnS@HgS), can serve as a fresh interface for the activation of Sd0 to Sd* through the S-CVD method, thereby achieving a self-sustained Hg0 adsorption capacity exceeding 300 mg g−1 without saturation limitations. Theoretical calculations substantiate the self-sustained adsorption mechanism that S8 ring on both ZnS and ZnS@HgS can be activated to chemical bond S4 chain, exhibiting a stronger Hg0 adsorption energy than pristine ones. Importantly, this S-CVD strategy is applicable to the in-situ activation of synthetic or natural MS containing chalcophile metal elements for Hg0 removal and also holds potential applications for various purposes requiring MS adsorbents.

Suggested Citation

  • Qinyuan Hong & Haomiao Xu & Xiaoming Sun & Jiaxing Li & Wenjun Huang & Zan Qu & Lizhi Zhang & Naiqiang Yan, 2024. "In-situ low-temperature sulfur CVD on metal sulfides with SO2 to realize self-sustained adsorption of mercury," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47725-3
    DOI: 10.1038/s41467-024-47725-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47725-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47725-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hailong Li & Jiaoqin Zheng & Wei Zheng & Hongxiao Zu & Hongmei Chen & Jianping Yang & Wenqi Qu & Lijian Leng & Yong Feng & Zequn Yang, 2023. "In situ acid etching boosts mercury accommodation capacities of transition metal sulfides," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Kevin Schaefer & Yasin Elshorbany & Elchin Jafarov & Paul F. Schuster & Robert G. Striegl & Kimberly P. Wickland & Elsie M. Sunderland, 2020. "Potential impacts of mercury released from thawing permafrost," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Daniel Obrist & Yannick Agnan & Martin Jiskra & Christine L. Olson & Dominique P. Colegrove & Jacques Hueber & Christopher W. Moore & Jeroen E. Sonke & Detlev Helmig, 2017. "Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution," Nature, Nature, vol. 547(7662), pages 201-204, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tengfei Yuan & Shaojian Huang & Peng Zhang & Zhengcheng Song & Jun Ge & Xin Miao & Yujuan Wang & Qiaotong Pang & Dong Peng & Peipei Wu & Junjiong Shao & Peipei Zhang & Yabo Wang & Hongyan Guo & Weidon, 2024. "Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Beatriz Ferreira Araujo & Stefan Osterwalder & Natalie Szponar & Domenica Lee & Mariia V. Petrova & Jakob Boyd Pernov & Shaddy Ahmed & Lars-Eric Heimbürger-Boavida & Laure Laffont & Roman Teisserenc &, 2022. "Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Troy J. Bouffard & Ekaterina Uryupova & Klaus Dodds & Vladimir E. Romanovsky & Alec P. Bennett & Dmitry Streletskiy, 2021. "Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing," Land, MDPI, vol. 10(6), pages 1-17, June.
    4. Hailong Li & Fanyue Meng & Penglin Zhu & Hongxiao Zu & Zequn Yang & Wenqi Qu & Jianping Yang, 2024. "Biomimetic mercury immobilization by selenium functionalized polyphenylene sulfide fabric," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Joshua D. Landis & Daniel Obrist & Jun Zhou & Carl E. Renshaw & William H. McDowell & Christopher J. Nytch & Marisa C. Palucis & Joanmarie Vecchio & Fernando Montano Lopez & Vivien F. Taylor, 2024. "Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Moritz Langer & Thomas Schneider Deimling & Sebastian Westermann & Rebecca Rolph & Ralph Rutte & Sofia Antonova & Volker Rachold & Michael Schultz & Alexander Oehme & Guido Grosse, 2023. "Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    8. Seung Hyeon Lim & Younggwang Kim & Laura C. Motta & Eun Jin Yang & Tae Siek Rhee & Jong Kuk Hong & Seunghee Han & Sae Yun Kwon, 2024. "Near surface oxidation of elemental mercury leads to mercury exposure in the Arctic Ocean biota," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Chuxian Li & Martin Jiskra & Mats B. Nilsson & Stefan Osterwalder & Wei Zhu & Dmitri Mauquoy & Ulf Skyllberg & Maxime Enrico & Haijun Peng & Yu Song & Erik Björn & Kevin Bishop, 2023. "Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Jun Zhou & Silas W. Bollen & Eric M. Roy & David Y. Hollinger & Ting Wang & John T. Lee & Daniel Obrist, 2023. "Comparing ecosystem gaseous elemental mercury fluxes over a deciduous and coniferous forest," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47725-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.