IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49789-7.html
   My bibliography  Save this article

Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry

Author

Listed:
  • Joshua D. Landis

    (Dartmouth College)

  • Daniel Obrist

    (University of Massachusetts
    University of California)

  • Jun Zhou

    (Chinese Academy of Sciences)

  • Carl E. Renshaw

    (Dartmouth College)

  • William H. McDowell

    (University of New Hampshire
    Florida International University)

  • Christopher J. Nytch

    (University of Puerto Rico – Rio Piedras)

  • Marisa C. Palucis

    (Dartmouth College)

  • Joanmarie Vecchio

    (William and Mary)

  • Fernando Montano Lopez

    (Dartmouth College)

  • Vivien F. Taylor

    (Dartmouth College)

Abstract

Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.

Suggested Citation

  • Joshua D. Landis & Daniel Obrist & Jun Zhou & Carl E. Renshaw & William H. McDowell & Christopher J. Nytch & Marisa C. Palucis & Joanmarie Vecchio & Fernando Montano Lopez & Vivien F. Taylor, 2024. "Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49789-7
    DOI: 10.1038/s41467-024-49789-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49789-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49789-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Obrist & Yannick Agnan & Martin Jiskra & Christine L. Olson & Dominique P. Colegrove & Jacques Hueber & Christopher W. Moore & Jeroen E. Sonke & Detlev Helmig, 2017. "Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution," Nature, Nature, vol. 547(7662), pages 201-204, July.
    2. Chuxian Li & Martin Jiskra & Mats B. Nilsson & Stefan Osterwalder & Wei Zhu & Dmitri Mauquoy & Ulf Skyllberg & Maxime Enrico & Haijun Peng & Yu Song & Erik Björn & Kevin Bishop, 2023. "Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jacqueline R. Gerson & Natalie Szponar & Angelica Almeyda Zambrano & Bridget Bergquist & Eben Broadbent & Charles T. Driscoll & Gideon Erkenswick & David C. Evers & Luis E. Fernandez & Heileen Hsu-Kim, 2022. "Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tengfei Yuan & Shaojian Huang & Peng Zhang & Zhengcheng Song & Jun Ge & Xin Miao & Yujuan Wang & Qiaotong Pang & Dong Peng & Peipei Wu & Junjiong Shao & Peipei Zhang & Yabo Wang & Hongyan Guo & Weidon, 2024. "Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jun Zhou & Silas W. Bollen & Eric M. Roy & David Y. Hollinger & Ting Wang & John T. Lee & Daniel Obrist, 2023. "Comparing ecosystem gaseous elemental mercury fluxes over a deciduous and coniferous forest," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Qinyuan Hong & Haomiao Xu & Xiaoming Sun & Jiaxing Li & Wenjun Huang & Zan Qu & Lizhi Zhang & Naiqiang Yan, 2024. "In-situ low-temperature sulfur CVD on metal sulfides with SO2 to realize self-sustained adsorption of mercury," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Seung Hyeon Lim & Younggwang Kim & Laura C. Motta & Eun Jin Yang & Tae Siek Rhee & Jong Kuk Hong & Seunghee Han & Sae Yun Kwon, 2024. "Near surface oxidation of elemental mercury leads to mercury exposure in the Arctic Ocean biota," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Chuxian Li & Martin Jiskra & Mats B. Nilsson & Stefan Osterwalder & Wei Zhu & Dmitri Mauquoy & Ulf Skyllberg & Maxime Enrico & Haijun Peng & Yu Song & Erik Björn & Kevin Bishop, 2023. "Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Beatriz Ferreira Araujo & Stefan Osterwalder & Natalie Szponar & Domenica Lee & Mariia V. Petrova & Jakob Boyd Pernov & Shaddy Ahmed & Lars-Eric Heimbürger-Boavida & Laure Laffont & Roman Teisserenc &, 2022. "Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49789-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.