IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010936.html
   My bibliography  Save this article

System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system

Author

Listed:
  • Chen, Lu
  • Li, Xin
  • Liu, Wei
  • Kang, Xinyu
  • Zhao, Yifei
  • Wang, Minxi

Abstract

The deepening conflict between human societal progress and efforts to combat climate change necessitates immediate coordination among the Economy-Energy-Carbon (EEC) management. The study applies IPCC accounting methods to compute the historical carbon emissions in the Chengdu-Chongqing economic circle from 2005 to 2021. It assesses the developmental efficiency of various subsystems in the EEC system by employing the rank-sum ratio. Taking a typical city in the region (Chongqing) as a case study, this study integrates System Dynamics (SD) with NSGAIII to develop an EEC multi-objective optimization model. It utilizes the VIKOR model to select the optimal solution. Based on this, the analysis explores the coupled and coordinated state of the EEC system from 2022 to 2030 under the optimal solution mode. Research findings indicate that: (1) The overall carbon emissions exhibit a slight increase, where carbon sources surpass the carbon sink created by land use. (2) Compared to results from other preference-based scenarios, in the scenario where subsystem efficiencies are all optimal, the minimum cumulative carbon emissions amount to 1520.52 million tons, with the economy maintaining a favorable status. Moreover, the overall coupling coordination of the EEC is in a relatively favorable state, and it tends to improve annually. (3) To attain the coordinated development of the EEC system by 2030, the energy structure of the representative city must decrease coal consumption by 26.17%, maintain the construction land ratio below 3.7%, and guarantee forest coverage exceeds 57.77%. This study, utilizing complex system simulations and optimization analyses across various scenarios, offers pertinent recommendations for attaining urban low-carbon development while upholding societal advancement.

Suggested Citation

  • Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010936
    DOI: 10.1016/j.apenergy.2024.123710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.