IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17001-1.html
   My bibliography  Save this article

Delayed emergence of a global temperature response after emission mitigation

Author

Listed:
  • B. H. Samset

    (CICERO Center for International Climate Research)

  • J. S. Fuglestvedt

    (CICERO Center for International Climate Research)

  • M. T. Lund

    (CICERO Center for International Climate Research)

Abstract

A major step towards achieving the goals of the Paris agreement would be a measurable change in the evolution of global warming in response to mitigation of anthropogenic emissions. The inertia and internal variability of the climate system, however, will delay the emergence of a discernible response even to strong, sustained mitigation. Here, we investigate when we could expect a significant change in the evolution of global mean surface temperature after strong mitigation of individual climate forcers. Anthropogenic CO2 has the highest potential for a rapidly measurable influence, combined with long term benefits, but the required mitigation is very strong. Black Carbon (BC) mitigation could be rapidly discernible, but has a low net gain in the longer term. Methane mitigation combines rapid effects on surface temperature with long term effects. For other gases or aerosols, even fully removing anthropogenic emissions is unlikely to have a discernible impact before mid-century.

Suggested Citation

  • B. H. Samset & J. S. Fuglestvedt & M. T. Lund, 2020. "Delayed emergence of a global temperature response after emission mitigation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17001-1
    DOI: 10.1038/s41467-020-17001-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17001-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17001-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    2. Bjørn H. Samset & Jan S. Fuglestvedt & Marianne T. Lund, 2022. "Reply to: Uncertainty in near-term temperature evolution must not obscure assessments of climate mitigation benefits," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    3. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    4. Chen, Jianxing & Wei, Shiwei & Mei, Chun, 2023. "Do structural transformation and urbanization assist in enhancing sustainable energy technologies innovations? Evidence from ASEAN countries," Renewable Energy, Elsevier, vol. 211(C), pages 895-902.
    5. Berlemann, Michael & Bumann, Silke & Methorst, Joel, 2024. "Do climate-related disasters cause dissatisfaction with environmental policies?," HWWI Working Paper Series 1/2024, Hamburg Institute of International Economics (HWWI).
    6. B. H. Samset & C. Zhou & J. S. Fuglestvedt & M. T. Lund & J. Marotzke & M. D. Zelinka, 2022. "Earlier emergence of a temperature response to mitigation by filtering annual variability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Milena Vuckovic & Johanna Schmidt, 2021. "Visual Analytics for Climate Change Detection in Meteorological Time-Series," Forecasting, MDPI, vol. 3(2), pages 1-14, April.
    8. Ben Zhang & Lei Ma & Zheng Liu, 2020. "Literature Trend Identification of Sustainable Technology Innovation: A Bibliometric Study Based on Co-Citation and Main Path Analysis," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    9. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    10. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17001-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.