IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3762-d1532482.html
   My bibliography  Save this article

Competitive Elimination Improved Differential Evolution for Wind Farm Layout Optimization Problems

Author

Listed:
  • Sichen Tao

    (Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan)

  • Yifei Yang

    (Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8560, Japan)

  • Ruihan Zhao

    (School of Mechanical Engineering, Tongji University, Shanghai 200082, China)

  • Hiroyoshi Todo

    (Wicresoft Co., Ltd., Tokyo 163-0445, Japan)

  • Zheng Tang

    (Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan)

Abstract

The wind farm layout optimization problem (WFLOP) aims to maximize wind energy utilization efficiency under different wind conditions by optimizing the spatial layout of wind turbines to fully mitigate energy losses caused by wake effects. Some high-performance continuous optimization methods, such as differential evolution (DE) variants, exhibit limited performance when directly applied due to WFLOP’s discrete nature. Therefore, metaheuristic algorithms with inherent discrete characteristics like genetic algorithms (GAs) and particle swarm optimization (PSO) have been extensively developed into current state-of-the-art WFLOP optimizers. In this paper, we propose a novel DE optimizer based on a genetic learning-guided competitive elimination mechanism called CEDE. By designing specialized genetic learning and competitive elimination mechanisms, we effectively address the issue of DE variants failing in the WFLOP due to a lack of discrete optimization characteristics. This method retains the adaptive parameter adjustment capability of advanced DE variants and actively enhances population diversity during convergence through the proposed mechanism, preventing premature convergence caused by non-adaptiveness. Experimental results show that under 10 complex wind field conditions, CEDE significantly outperforms six state-of-the-art WFLOP optimizers, improving the upper limit of power generation efficiency while demonstrating robustness and effectiveness. Additionally, our experiments introduce more realistic wind condition data to enhance WFLOP modeling.

Suggested Citation

  • Sichen Tao & Yifei Yang & Ruihan Zhao & Hiroyoshi Todo & Zheng Tang, 2024. "Competitive Elimination Improved Differential Evolution for Wind Farm Layout Optimization Problems," Mathematics, MDPI, vol. 12(23), pages 1-24, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3762-:d:1532482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    2. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    3. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    4. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    5. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    6. Turner, S.D.O. & Romero, D.A. & Zhang, P.Y. & Amon, C.H. & Chan, T.C.Y., 2014. "A new mathematical programming approach to optimize wind farm layouts," Renewable Energy, Elsevier, vol. 63(C), pages 674-680.
    7. Jan Christoph Steckel & Michael Jakob, 2018. "The role of financing cost and de-risking strategies for clean energy investment," International Economics, CEPII research center, issue 155, pages 19-28.
    8. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    9. Ju, Xinglong & Liu, Feng, 2019. "Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation," Applied Energy, Elsevier, vol. 248(C), pages 429-445.
    10. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part II: Wind Turbine Wakes Interaction," Energies, MDPI, vol. 12(7), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    2. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    4. Chen, Kaixuan & Lin, Jin & Qiu, Yiwei & Liu, Feng & Song, Yonghua, 2022. "Joint optimization of wind farm layout considering optimal control," Renewable Energy, Elsevier, vol. 182(C), pages 787-796.
    5. Hou, Peng & Hu, Weihao & Soltani, Mohsen & Chen, Cong & Chen, Zhe, 2017. "Combined optimization for offshore wind turbine micro siting," Applied Energy, Elsevier, vol. 189(C), pages 271-282.
    6. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    7. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    8. Nagpal, Shriya V. & Liu, M. Vivienne & Anderson, C. Lindsay, 2021. "A comparison of deterministic refinement techniques for wind farm layout optimization," Renewable Energy, Elsevier, vol. 168(C), pages 581-592.
    9. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    10. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    11. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    12. Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
    13. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    14. Kuo, Jim Y.J. & Romero, David A. & Amon, Cristina H., 2015. "A mechanistic semi-empirical wake interaction model for wind farm layout optimization," Energy, Elsevier, vol. 93(P2), pages 2157-2165.
    15. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    16. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    17. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    18. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    19. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    20. Petković, Dalibor & Shamshirband, Shahaboddin & Kamsin, Amirrudin & Lee, Malrey & Anicic, Obrad & Nikolić, Vlastimir, 2016. "Survey of the most influential parameters on the wind farm net present value (NPV) by adaptive neuro-fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1270-1278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3762-:d:1532482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.