IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48849-2.html
   My bibliography  Save this article

Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century

Author

Listed:
  • Tengfei Yuan

    (Nanjing University)

  • Shaojian Huang

    (Nanjing University)

  • Peng Zhang

    (Nanjing University)

  • Zhengcheng Song

    (Nanjing University
    Nanjing University
    Nanjing University, Nanjing)

  • Jun Ge

    (Nanjing University
    Nanjing University, Nanjing)

  • Xin Miao

    (Nanjing University)

  • Yujuan Wang

    (Nanjing University)

  • Qiaotong Pang

    (Nanjing University)

  • Dong Peng

    (Nanjing University)

  • Peipei Wu

    (Nanjing University)

  • Junjiong Shao

    (Zhejiang A&F University)

  • Peipei Zhang

    (Chinese Academy of Sciences)

  • Yabo Wang

    (Yangzhou University)

  • Hongyan Guo

    (Nanjing University)

  • Weidong Guo

    (Nanjing University)

  • Yanxu Zhang

    (Nanjing University
    Nanjing University
    Nanjing University, Nanjing)

Abstract

Mercury (Hg), a potent neurotoxin posing risks to human health, is cycled through vegetation uptake, which is susceptible to climate change impacts. However, the extent and pattern of these impacts are largely unknown, obstructing predictions of Hg’s fate in terrestrial ecosystems. Here, we evaluate the effects of climate change on vegetation elemental Hg [Hg(0)] uptake using a state-of-the-art global terrestrial Hg model (CLM5-Hg) that incorporates plant physiology. In a business-as-usual scenario, the terrestrial Hg(0) sink is predicted to decrease by 1870 Mg yr−1 in 2100, that is ~60% lower than the present-day condition. We find a potential decoupling between the trends of CO2 assimilation and Hg(0) uptake process by vegetation in the 21st century, caused by the decreased stomatal conductance with increasing CO2. This implies a substantial influx of Hg into aquatic ecosystems, posing an elevated threat that warrants consideration during the evaluation of the effectiveness of the Minamata Convention.

Suggested Citation

  • Tengfei Yuan & Shaojian Huang & Peng Zhang & Zhengcheng Song & Jun Ge & Xin Miao & Yujuan Wang & Qiaotong Pang & Dong Peng & Peipei Wu & Junjiong Shao & Peipei Zhang & Yabo Wang & Hongyan Guo & Weidon, 2024. "Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48849-2
    DOI: 10.1038/s41467-024-48849-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48849-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48849-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baojing Gu & Xiuming Zhang & Shu Kee Lam & Yingliang Yu & Hans J. M. Grinsven & Shaohui Zhang & Xiaoxi Wang & Benjamin Leon Bodirsky & Sitong Wang & Jiakun Duan & Chenchen Ren & Lex Bouwman & Wim Vrie, 2023. "Cost-effective mitigation of nitrogen pollution from global croplands," Nature, Nature, vol. 613(7942), pages 77-84, January.
    2. Yanxu Zhang & Zhengcheng Song & Shaojian Huang & Peng Zhang & Yiming Peng & Peipei Wu & Jing Gu & Stephanie Dutkiewicz & Huanxin Zhang & Shiliang Wu & Feiyue Wang & Long Chen & Shuxiao Wang & Ping Li, 2021. "Global health effects of future atmospheric mercury emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Kevin Schaefer & Yasin Elshorbany & Elchin Jafarov & Paul F. Schuster & Robert G. Striegl & Kimberly P. Wickland & Elsie M. Sunderland, 2020. "Potential impacts of mercury released from thawing permafrost," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Daniel Obrist & Yannick Agnan & Martin Jiskra & Christine L. Olson & Dominique P. Colegrove & Jacques Hueber & Christopher W. Moore & Jeroen E. Sonke & Detlev Helmig, 2017. "Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution," Nature, Nature, vol. 547(7662), pages 201-204, July.
    6. Alistair W. R. Seddon & Marc Macias-Fauria & Peter R. Long & David Benz & Kathy J. Willis, 2016. "Sensitivity of global terrestrial ecosystems to climate variability," Nature, Nature, vol. 531(7593), pages 229-232, March.
    7. Jinglan Cui & Xiuming Zhang & Stefan Reis & Chen Wang & Sitong Wang & Peiying He & Hongyi Chen & Hans J. M. Grinsven & Baojing Gu, 2023. "Nitrogen cycles in global croplands altered by elevated CO2," Nature Sustainability, Nature, vol. 6(10), pages 1166-1176, October.
    8. Jacqueline R. Gerson & Natalie Szponar & Angelica Almeyda Zambrano & Bridget Bergquist & Eben Broadbent & Charles T. Driscoll & Gideon Erkenswick & David C. Evers & Luis E. Fernandez & Heileen Hsu-Kim, 2022. "Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinyuan Hong & Haomiao Xu & Xiaoming Sun & Jiaxing Li & Wenjun Huang & Zan Qu & Lizhi Zhang & Naiqiang Yan, 2024. "In-situ low-temperature sulfur CVD on metal sulfides with SO2 to realize self-sustained adsorption of mercury," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Joshua D. Landis & Daniel Obrist & Jun Zhou & Carl E. Renshaw & William H. McDowell & Christopher J. Nytch & Marisa C. Palucis & Joanmarie Vecchio & Fernando Montano Lopez & Vivien F. Taylor, 2024. "Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jun Zhou & Silas W. Bollen & Eric M. Roy & David Y. Hollinger & Ting Wang & John T. Lee & Daniel Obrist, 2023. "Comparing ecosystem gaseous elemental mercury fluxes over a deciduous and coniferous forest," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Beatriz Ferreira Araujo & Stefan Osterwalder & Natalie Szponar & Domenica Lee & Mariia V. Petrova & Jakob Boyd Pernov & Shaddy Ahmed & Lars-Eric Heimbürger-Boavida & Laure Laffont & Roman Teisserenc &, 2022. "Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Troy J. Bouffard & Ekaterina Uryupova & Klaus Dodds & Vladimir E. Romanovsky & Alec P. Bennett & Dmitry Streletskiy, 2021. "Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing," Land, MDPI, vol. 10(6), pages 1-17, June.
    6. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    7. Sharaniya Vijitharan & Nophea Sasaki & Manjunatha Venkatappa & Nitin Kumar Tripathi & Issei Abe & Takuji W. Tsusaka, 2022. "Assessment of Forest Cover Changes in Vavuniya District, Sri Lanka: Implications for the Establishment of Subnational Forest Reference Emission Level," Land, MDPI, vol. 11(7), pages 1-25, July.
    8. Li Yang & Yue Xu & Junqi Zhu & Keyu Sun, 2024. "Research on Water Ecological Resilience Measurement and Influencing Factors: A Case Study of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    9. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    10. Huang, Ze & Liu, Yu & Qiu, Kaiyang & López-Vicente, Manuel & Shen, Weibo & Wu, Gao-Lin, 2021. "Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: Implications for sustainable agroforestry water management," Agricultural Water Management, Elsevier, vol. 254(C).
    11. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Henry R. Scharf & Ann M. Raiho & Sierra Pugh & Carl A. Roland & David K. Swanson & Sarah E. Stehn & Mevin B. Hooten, 2022. "Multivariate Bayesian clustering using covariate‐informed components with application to boreal vegetation sensitivity," Biometrics, The International Biometric Society, vol. 78(4), pages 1427-1440, December.
    14. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    15. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    16. Shuang Liu & Xuefei Li & Long Chen & Qing Zhao & Chaohui Zhao & Xisheng Hu & Jian Li, 2022. "A New Approach to Investigate the Spatially Heterogeneous in the Cooling Effects of Landscape Pattern," Land, MDPI, vol. 11(2), pages 1-21, February.
    17. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    18. Thaís Pacheco Kasecker & Mario Barroso Ramos-Neto & Jose Maria Cardoso Silva & Fabio Rubio Scarano, 2018. "Ecosystem-based adaptation to climate change: defining hotspot municipalities for policy design and implementation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 981-993, August.
    19. Yu-Pin Lin & Chi-Ju Chen & Wan-Yu Lien & Wen-Hao Chang & Joy R. Petway & Li-Chi Chiang, 2019. "Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    20. Jinglan Cui & Ouping Deng & Miao Zheng & Xiuming Zhang & Zihao Bian & Naiqing Pan & Hanqin Tian & Jianming Xu & Baojing Gu, 2024. "Warming exacerbates global inequality in forest carbon and nitrogen cycles," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48849-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.