IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41131-x.html
   My bibliography  Save this article

Air quality related equity implications of U.S. decarbonization policy

Author

Listed:
  • Paul Picciano

    (Massachusetts Institute of Technology)

  • Minghao Qiu

    (Stanford University
    Stanford University)

  • Sebastian D. Eastham

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Mei Yuan

    (Massachusetts Institute of Technology)

  • John Reilly

    (Massachusetts Institute of Technology)

  • Noelle E. Selin

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Climate policies that target greenhouse gas emissions can improve air quality by reducing co-emitted air pollutant emissions. However, the extent to which climate policy could contribute to the targets of reducing existing pollution disparities across different populations remains largely unknown. We quantify potential air pollution exposure reductions under U.S. federal carbon policy, considering implications of resulting health benefits for exposure disparities across U.S. racial/ethnic groups. We focus on policy cases that achieve reductions of 40-60% in 2030 economy-wide carbon dioxide (CO2) emissions, when compared with 2005 emissions. The 50% CO2 reduction policy case reduces average fine particulate matter (PM2.5) exposure across racial/ethnic groups, with greatest benefit for non-Hispanic Black (−0.44 μg/m3) and white populations (−0.37 μg/m3). The average exposure disparity for racial/ethnic minorities rises from 12.4% to 13.1%. Applying an optimization approach to multiple emissions reduction scenarios, we find that no alternate combination of reductions from different CO2 sources would substantially mitigate exposure disparities. Results suggest that CO2-based strategies for this range of reductions are insufficient for fully mitigating PM2.5 exposure disparities between white and racial/ethnic minority populations; addressing disparities may require larger-scale structural changes.

Suggested Citation

  • Paul Picciano & Minghao Qiu & Sebastian D. Eastham & Mei Yuan & John Reilly & Noelle E. Selin, 2023. "Air quality related equity implications of U.S. decarbonization policy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41131-x
    DOI: 10.1038/s41467-023-41131-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41131-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41131-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hernandez-Cortes, Danae & Meng, Kyle C., 2023. "Do environmental markets cause environmental injustice? Evidence from California’s carbon market," Journal of Public Economics, Elsevier, vol. 217(C).
    2. Burtraw, Dallas & Palmer, Karen & Krupnick, Alan & Evans, David & Toth, Russell, 2005. "Economics of Pollution Trading for SO2 and NOx," RFF Working Paper Series dp-05-05, Resources for the Future.
    3. Shupeng Zhu & Michael Mac Kinnon & Andrea Carlos-Carlos & Steven J. Davis & Scott Samuelsen, 2022. "Decarbonization will lead to more equitable air quality in California," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Teagan Goforth & Destenie Nock, 2022. "Air pollution disparities and equality assessments of US national decarbonization strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hausman, Catherine & Stolper, Samuel, 2021. "Inequality, information failures, and air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    2. Halvor Briseid Storrøsten, 2012. "Prices vs. quantities: Technology choice, uncertainty and welfare," Discussion Papers 677, Statistics Norway, Research Department.
    3. Xu, Jiuping & Shu, Kejing & Wang, Fengjuan & Yang, Guocan, 2024. "Bi-level multi-objective distribution strategy integrating the permit trading scheme towards coal production capacity layout optimization: Case study from China," Resources Policy, Elsevier, vol. 91(C).
    4. Hu, Ming-Che & Hobbs, Benjamin F., 2010. "Analysis of multi-pollutant policies for the U.S. power sector under technology and policy uncertainty using MARKAL," Energy, Elsevier, vol. 35(12), pages 5430-5442.
    5. Shobe, William & Palmer, Karen & Myers, Erica & Holt, Charles & Goeree, Jacob & Burtraw, Dallas, 2010. "An Experimental Analysis of Auctioning Emission Allowances Under a Loose Cap," Agricultural and Resource Economics Review, Cambridge University Press, vol. 39(2), pages 162-175, April.
    6. Palmer, Karen L. & Burtraw, Dallas, 2005. "The Environmental Impacts of Electricity Restructuring: Looking Back and Looking Forward," Discussion Papers 10656, Resources for the Future.
    7. Ivan Rudik & Derek Lemoine & Antonia Marcheva, 2024. "Equity and Efficiency in the Bipartisan Infrastructure Law’s Adaptation Investments," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 6, National Bureau of Economic Research, Inc.
    8. Muller Nicholas & Tong Daniel & Mendelsohn Robert, 2009. "Regulating NOx and SO2 Emissions in Atlanta," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(2), pages 1-32, March.
    9. Anger, Annela & Köhler, Jonathan, 2010. "Including aviation emissions in the EU ETS: Much ado about nothing? A review," Transport Policy, Elsevier, vol. 17(1), pages 38-46, January.
    10. Robert W. Hahn & Robert N. Stavins, 2011. "The Effect of Allowance Allocations on Cap-and-Trade System Performance," Journal of Law and Economics, University of Chicago Press, vol. 54(S4), pages 267-294.
    11. Feng, Tong & Sun, Yuechi & Shi, Yating & Ma, Jie & Feng, Chunmei & Chen, Zhenni, 2024. "Air pollution control policies and impacts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Liu, Yu & Hu, Xiaohong & Feng, Kuishuang, 2017. "Economic and environmental implications of raising China's emission standard for thermal power plants: An environmentally extended CGE analysis," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 64-72.
    13. Duke, Joshua M. & Liu, Hongxing & Monteith, Tyler & McGrath, Joshua & Fiorellino, Nicole M., 2020. "A method for predicting participation in a performance-based water quality trading program," Ecological Economics, Elsevier, vol. 177(C).
    14. Doyle, Martin W. & Yates, Andrew J., 2010. "Stream ecosystem service markets under no-net-loss regulation," Ecological Economics, Elsevier, vol. 69(4), pages 820-827, February.
    15. Lessmann, Christian & Kramer, Niklas, 2024. "The effect of cap-and-trade on sectoral emissions: Evidence from California," Energy Policy, Elsevier, vol. 188(C).
    16. Meredith Fowlie & Stephen P. Holland & Erin T. Mansur, 2012. "What Do Emissions Markets Deliver and to Whom? Evidence from Southern California's NOx Trading Program," American Economic Review, American Economic Association, vol. 102(2), pages 965-993, April.
    17. Zhao, Jiaxin & Mattauch, Linus, 2022. "When standards have better distributional consequences than carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    18. Kramer, Niklas & Lessmann, Christian, 2023. "The Effects of Carbon Trading: Evidence from California’s ETS," MPRA Paper 116796, University Library of Munich, Germany.
    19. Burke, Joshua & Gambhir, Ajay, 2022. "Policy incentives for greenhouse gas removal techniques: the risks of premature inclusion in carbon markets and the need for a multi-pronged policy framework," LSE Research Online Documents on Economics 115010, London School of Economics and Political Science, LSE Library.
    20. Hongbo Duan, Lei Zhu, Gürkan Kumbaroglu, and Ying Fan, 2016. "Regional Opportunities for China To Go Low-Carbon: Results from the REEC Model," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41131-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.