Author
Listed:
- Ruiying Li
(China University of Petroleum)
- Jingyuan Shang
(China University of Petroleum)
- Fei Wang
(China University of Petroleum)
- Qing Lu
(China University of Petroleum)
- Hao Yan
(China University of Petroleum)
- Yongxiao Tuo
(China University of Petroleum)
- Yibin Liu
(China University of Petroleum)
- Xiang Feng
(China University of Petroleum)
- Xiaobo Chen
(China University of Petroleum)
- De Chen
(Norwegian University of Science and Technology)
- Chaohe Yang
(China University of Petroleum)
Abstract
Pt/α-MoC1-x catalysts exhibit exceptional activity in low-temperature water-gas shift reactions. However, quantitatively identifying and fine-tuning the active sites has remained a significant challenge. In this study, we reveal that fully exposed monolayer Pt nanoclusters on molybdenum carbides demonstrate mass activity that exceeds that of bulk molybdenum carbide catalysts by one to two orders of magnitude at 100–200 °C for low-temperature water-gas shift reactions. This advancement is driven by the precise quantification and elucidation of active sites along the Pt-molybdenum carbide interfacial perimeter. By combining sacrificial CO adsorption per Pt atom, Density Functional Theory calculations, and CO chemisorption measurements, we establish a direct correlation between the monolayer Pt nanocluster size and the number of interfacial perimeters on Pt/α-MoC1-x catalysts. In this work, these findings provide key insights into the active site configuration of Pt/α-MoC1-x catalysts and open pathways for innovative catalyst design, with the interfacial perimeter identified as a crucial factor in enhancing catalytic performance.
Suggested Citation
Ruiying Li & Jingyuan Shang & Fei Wang & Qing Lu & Hao Yan & Yongxiao Tuo & Yibin Liu & Xiang Feng & Xiaobo Chen & De Chen & Chaohe Yang, 2025.
"Quantification and optimization of platinum–molybdenum carbide interfacial sites to enhance low-temperature water-gas shift reaction,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55886-y
DOI: 10.1038/s41467-025-55886-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55886-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.