IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55551-w.html
   My bibliography  Save this article

A strategy to reduce thermal expansion and achieve higher mechanical properties in iron alloys

Author

Listed:
  • Hao Lu

    (University of Science and Technology Beijing)

  • Chang Zhou

    (University of Science and Technology Beijing)

  • Yuzhu Song

    (University of Science and Technology Beijing)

  • Yuanpeng Zhang

    (Oak Ridge National Laboratory)

  • Yiming Wu

    (Laboratory for Mechanics of Materials and Nanostructures)

  • Feixiang Long

    (University of Science and Technology Beijing)

  • Yonghao Yao

    (University of Science and Technology Beijing)

  • Jiazheng Hao

    (Spallation Neutron Source Science Center)

  • Yan Chen

    (Oak Ridge National Laboratory)

  • Dunji Yu

    (Oak Ridge National Laboratory)

  • J. Jakob Schwiedrzik

    (Laboratory for Mechanics of Materials and Nanostructures)

  • Ke An

    (Oak Ridge National Laboratory)

  • Lunhua He

    (Spallation Neutron Source Science Center)

  • Zhaoping Lu

    (University of Science and Technology Beijing)

  • Jun Chen

    (University of Science and Technology Beijing)

Abstract

Iron alloys, including steels and magnetic functional materials, are widely used in capital construction, manufacturing, electromagnetic technology, etc. However, they face the long-standing challenge of high coefficient of thermal expansion (CTE), limiting the applications in high-precision fields. This work proposes a strategy involving the in-situ formation of a nano-scale lamellar/labyrinthine negative thermal expansion (NTE) phase within the iron matrix to tackle this problem. For example, a model alloy, Fe-Zr10-Nb6, was synthesized and its CTE is reduced to approximately half of the iron matrix. Meanwhile, the alloy possesses a strength-plasticity combination of 1.5 GPa (compressive strength) and 17.5% (ultimate strain), which outperforms other low thermal expansion (LTE) metallic materials. The magnetovolume effect of the NTE phase is deemed to counteract the positive thermal expansion in iron. The high stress-carrying hard NTE phase and the tough matrix synergistically contribute to the high mechanical properties. The interaction between the slip of lamellar microstructure and the slip-hindering of labyrinthine microstructure further enhances the strength-plasticity combination. This work shows the promise of offering a method to produce LTE iron alloys with high mechanical properties.

Suggested Citation

  • Hao Lu & Chang Zhou & Yuzhu Song & Yuanpeng Zhang & Yiming Wu & Feixiang Long & Yonghao Yao & Jiazheng Hao & Yan Chen & Dunji Yu & J. Jakob Schwiedrzik & Ke An & Lunhua He & Zhaoping Lu & Jun Chen, 2025. "A strategy to reduce thermal expansion and achieve higher mechanical properties in iron alloys," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55551-w
    DOI: 10.1038/s41467-024-55551-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55551-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55551-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark van Schilfgaarde & I. A. Abrikosov & B. Johansson, 1999. "Origin of the Invar effect in iron–nickel alloys," Nature, Nature, vol. 400(6739), pages 46-49, July.
    2. Chengyi Yu & Kun Lin & Xin Chen & Suihe Jiang & Yili Cao & Wenjie Li & Liang Chen & Ke An & Yan Chen & Dunji Yu & Kenichi Kato & Qinghua Zhang & Lin Gu & Li You & Xiaojun Kuang & Hui Wu & Qiang Li & J, 2023. "Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Liuliu Han & Fernando Maccari & Isnaldi R. Souza Filho & Nicolas J. Peter & Ye Wei & Baptiste Gault & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2022. "A mechanically strong and ductile soft magnet with extremely low coercivity," Nature, Nature, vol. 608(7922), pages 310-316, August.
    4. Meng Xu & Qiang Li & Yuzhu Song & Yuanji Xu & Andrea Sanson & Naike Shi & Na Wang & Qiang Sun & Changtian Wang & Xin Chen & Yongqiang Qiao & Feixiang Long & Hui Liu & Qiang Zhang & Alessandro Venier &, 2023. "Giant uniaxial negative thermal expansion in FeZr2 alloy over a wide temperature range," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Sang-Heon Kim & Hansoo Kim & Nack J. Kim, 2015. "Brittle intermetallic compound makes ultrastrong low-density steel with large ductility," Nature, Nature, vol. 518(7537), pages 77-79, February.
    6. Suihe Jiang & Hui Wang & Yuan Wu & Xiongjun Liu & Honghong Chen & Mengji Yao & Baptiste Gault & Dirk Ponge & Dierk Raabe & Akihiko Hirata & Mingwei Chen & Yandong Wang & Zhaoping Lu, 2017. "Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation," Nature, Nature, vol. 544(7651), pages 460-464, April.
    7. Chengyi Yu & Kun Lin & Suihe Jiang & Yili Cao & Wenjie Li & Yilin Wang & Yan Chen & Ke An & Li You & Kenichi Kato & Qiang Li & Jun Chen & Jinxia Deng & Xianran Xing, 2021. "Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengyi Yu & Kun Lin & Qinghua Zhang & Huihui Zhu & Ke An & Yan Chen & Dunji Yu & Tianyi Li & Xiaoqian Fu & Qian Yu & Li You & Xiaojun Kuang & Yili Cao & Qiang Li & Jinxia Deng & Xianran Xing, 2024. "An isotropic zero thermal expansion alloy with super-high toughness," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Chengyi Yu & Kun Lin & Xin Chen & Suihe Jiang & Yili Cao & Wenjie Li & Liang Chen & Ke An & Yan Chen & Dunji Yu & Kenichi Kato & Qinghua Zhang & Lin Gu & Li You & Xiaojun Kuang & Hui Wu & Qiang Li & J, 2023. "Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shun Tian & Ke Zhou & Wanjian Yin & Yilun Liu, 2024. "Machine learning enables the discovery of 2D Invar and anti-Invar monolayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Zhuoran Xia & Xiangyi Huang & Jiaqi Liu & Wen Dai & Liuxiong Luo & Zhaohan Jiang & Shen Gong & Yuyuan Zhao & Zhou Li, 2024. "Designing Ni2MnSn Heusler magnetic nanoprecipitate in copper alloy for increased strength and electromagnetic shielding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Yan Ma & Zongde Kou & Weiming Yang & Aina He & Yaqiang Dong & Qikui Man & Haishun Liu & Zhiming Li & Akihisa Inoue & Jiawei Li, 2024. "A one-step fabrication of soft-magnetic high entropy alloy fiber with excellent strength and flexibility," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Alexander Firlus & Mihai Stoica & Stefan Michalik & Robin E. Schäublin & Jörg F. Löffler, 2022. "Atomic structure evolution related to the Invar effect in Fe-based bulk metallic glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Shucai Zhang & Hao Feng & Huabing Li & Zhouhua Jiang & Tao Zhang & Hongchun Zhu & Yue Lin & Wei Zhang & Guoping Li, 2023. "Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Chang Liu & Jing Rao & Zhongji Sun & Wenjun Lu & James P. Best & Xuehan Li & Wenzhen Xia & Yilun Gong & Ye Wei & Bozhao Zhang & Jun Ding & Ge Wu & En Ma, 2024. "Near-theoretical strength and deformation stabilization achieved via grain boundary segregation and nano-clustering of solutes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Zhangwei Wang & Wenjun Lu & Fengchao An & Min Song & Dirk Ponge & Dierk Raabe & Zhiming Li, 2022. "High stress twinning in a compositionally complex steel of very high stacking fault energy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Meng Xu & Qiang Li & Yuzhu Song & Yuanji Xu & Andrea Sanson & Naike Shi & Na Wang & Qiang Sun & Changtian Wang & Xin Chen & Yongqiang Qiao & Feixiang Long & Hui Liu & Qiang Zhang & Alessandro Venier &, 2023. "Giant uniaxial negative thermal expansion in FeZr2 alloy over a wide temperature range," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Liuliu Han & Fernando Maccari & Ivan Soldatov & Nicolas J. Peter & Isnaldi R. Souza Filho & Rudolf Schäfer & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2023. "Strong and ductile high temperature soft magnets through Widmanstätten precipitates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Guohua Bai & Jiayi Sun & Zhenhua Zhang & Xiaolian Liu & Sateesh Bandaru & Weiwei Liu & Zhong Li & Hongxia Li & Ningning Wang & Xuefeng Zhang, 2024. "Vortex-based soft magnetic composite with ultrastable permeability up to gigahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Mengmeng Xia & Qiyue Wang & Yamin Liu & Chunyan Fang & Bo Zhang & Shengfei Yang & Fu Zhou & Peihua Lin & Mingzheng Gu & Canyu Huang & Xiaojun Zhang & Fangyuan Li & Hongying Liu & Guangfeng Wang & Dais, 2024. "Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Shenghua Wu & Hanne S. Soreide & Bin Chen & Jianjun Bian & Chong Yang & Chunan Li & Peng Zhang & Pengming Cheng & Jinyu Zhang & Yong Peng & Gang Liu & Yanjun Li & Hans J. Roven & Jun Sun, 2022. "Freezing solute atoms in nanograined aluminum alloys via high-density vacancies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55551-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.