IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51379-6.html
   My bibliography  Save this article

Machine learning enables the discovery of 2D Invar and anti-Invar monolayers

Author

Listed:
  • Shun Tian

    (Soochow University
    Xi’an Jiaotong University)

  • Ke Zhou

    (Soochow University)

  • Wanjian Yin

    (Soochow University)

  • Yilun Liu

    (Xi’an Jiaotong University)

Abstract

Materials demonstrating positive thermal expansion (PTE) or negative thermal expansion (NTE) are quite common, whereas those exhibiting zero thermal expansion (ZTE) are notably scarce. In this work, we identify the mechanical descriptors, namely in-plane tensile stiffness and out-of-plane bending stiffness, that can effectively classify PTE and NTE 2D crystals. By utilizing high throughput calculations and the state-of-the-art symbolic regression method, these descriptors aid in the discovery of ZTE or 2D Invar monolayers with the linear thermal expansion coefficient (LTEC) within ±2 × 10−6 K−1 in the middle range of temperatures. Additionally, the descriptors assist the discovery of large PTE and NTE 2D monolayers with the LTEC larger than ±15 × 10−6 K−1, which are so-called 2D anti-Invar monolayers. Advancing our understanding of materials with exceptionally low or high thermal expansion is of substantial scientific and technological interest, particularly in the development of next-generation electronics at the nanometer or even Ångstrom scale.

Suggested Citation

  • Shun Tian & Ke Zhou & Wanjian Yin & Yilun Liu, 2024. "Machine learning enables the discovery of 2D Invar and anti-Invar monolayers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51379-6
    DOI: 10.1038/s41467-024-51379-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51379-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51379-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51379-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.