IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43953-1.html
   My bibliography  Save this article

Strong and ductile high temperature soft magnets through Widmanstätten precipitates

Author

Listed:
  • Liuliu Han

    (Max-Planck-Institut für Eisenforschung)

  • Fernando Maccari

    (Technical University of Darmstadt)

  • Ivan Soldatov

    (IFW Dresden, Institute for Metallic Materials)

  • Nicolas J. Peter

    (Max-Planck-Institut für Eisenforschung)

  • Isnaldi R. Souza Filho

    (Max-Planck-Institut für Eisenforschung)

  • Rudolf Schäfer

    (IFW Dresden, Institute for Metallic Materials)

  • Oliver Gutfleisch

    (Technical University of Darmstadt)

  • Zhiming Li

    (Central South University)

  • Dierk Raabe

    (Max-Planck-Institut für Eisenforschung)

Abstract

Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.

Suggested Citation

  • Liuliu Han & Fernando Maccari & Ivan Soldatov & Nicolas J. Peter & Isnaldi R. Souza Filho & Rudolf Schäfer & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2023. "Strong and ductile high temperature soft magnets through Widmanstätten precipitates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43953-1
    DOI: 10.1038/s41467-023-43953-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43953-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43953-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rui Zhang & Chunyang Wang & Peichao Zou & Ruoqian Lin & Lu Ma & Liang Yin & Tianyi Li & Wenqian Xu & Hao Jia & Qiuyan Li & Sami Sainio & Kim Kisslinger & Stephen E. Trask & Steven N. Ehrlich & Yang Ya, 2022. "Compositionally complex doping for zero-strain zero-cobalt layered cathodes," Nature, Nature, vol. 610(7930), pages 67-73, October.
    2. Liuliu Han & Fernando Maccari & Isnaldi R. Souza Filho & Nicolas J. Peter & Ye Wei & Baptiste Gault & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2022. "A mechanically strong and ductile soft magnet with extremely low coercivity," Nature, Nature, vol. 608(7922), pages 310-316, August.
    3. S. X. Wang & N. X. Sun & M. Yamaguchi & S. Yabukami, 2000. "Properties of a new soft magnetic material," Nature, Nature, vol. 407(6801), pages 150-151, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Chengyi Yu & Kun Lin & Qinghua Zhang & Huihui Zhu & Ke An & Yan Chen & Dunji Yu & Tianyi Li & Xiaoqian Fu & Qian Yu & Li You & Xiaojun Kuang & Yili Cao & Qiang Li & Jinxia Deng & Xianran Xing, 2024. "An isotropic zero thermal expansion alloy with super-high toughness," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    6. Ge Wu & Chang Liu & Yong-Qiang Yan & Sida Liu & Xinyu Ma & Shengying Yue & Zhi-Wei Shan, 2024. "Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Kieran Winter & Zhirong Liao & Erik Abbá & Jose A. Robles Linares & Dragos Axinte, 2024. "Effect of sub-micron deformations at opposing strain rates on the micromagnetic behaviour of non-oriented electrical steel," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Zurui Cao & Pengcheng Zhang & Bailing An & Dawei Li & Yao Yu & Jie Pan & Cheng Zhang & Lin Liu, 2024. "In situ phase engineering during additive manufacturing enables high-performance soft-magnetic medium-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Shuya Zhu & Dingshun Yan & Yong Zhang & Liuliu Han & Dierk Raabe & Zhiming Li, 2024. "Strong and ductile Resinvar alloys with temperature- and time-independent resistivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Chengyi Yu & Kun Lin & Xin Chen & Suihe Jiang & Yili Cao & Wenjie Li & Liang Chen & Ke An & Yan Chen & Dunji Yu & Kenichi Kato & Qinghua Zhang & Lin Gu & Li You & Xiaojun Kuang & Hui Wu & Qiang Li & J, 2023. "Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Weihao Zeng & Fanjie Xia & Juan Wang & Jinlong Yang & Haoyang Peng & Wei Shu & Quan Li & Hong Wang & Guan Wang & Shichun Mu & Jinsong Wu, 2024. "Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Tonghuan Yang & Kun Zhang & Yuxuan Zuo & Jin Song & Yali Yang & Chuan Gao & Tao Chen & Hangchao Wang & Wukun Xiao & Zewen Jiang & Dingguo Xia, 2024. "Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries," Nature Sustainability, Nature, vol. 7(9), pages 1204-1214, September.
    13. Guohua Bai & Jiayi Sun & Zhenhua Zhang & Xiaolian Liu & Sateesh Bandaru & Weiwei Liu & Zhong Li & Hongxia Li & Ningning Wang & Xuefeng Zhang, 2024. "Vortex-based soft magnetic composite with ultrastable permeability up to gigahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43953-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.