IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43752-8.html
   My bibliography  Save this article

Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour

Author

Listed:
  • Shucai Zhang

    (Northeastern University)

  • Hao Feng

    (Northeastern University)

  • Huabing Li

    (Northeastern University
    Northeastern University)

  • Zhouhua Jiang

    (Northeastern University)

  • Tao Zhang

    (Northeastern University)

  • Hongchun Zhu

    (Northeastern University)

  • Yue Lin

    (Northeastern University)

  • Wei Zhang

    (Central Iron and Steel Research Institute
    CITIC Metal Co., Ltd.)

  • Guoping Li

    (Shanxi Taigang Stainless Steel Co., Ltd.
    State Key Laboratory of Advanced Stainless Steel Materials)

Abstract

Unavoidable nonmetallic inclusions generated in the steelmaking process are fatal defects that often cause serious corrosion failure of steel, leading to catastrophic accidents and huge economic losses. Over the past decades, extensive efforts have been made to address this difficult issue, but none of them have succeeded. Here, we propose a strategy of wrapping deleterious inclusions with corrosion-resistant niobium armour (Z phase). After systematic theoretical screening, we introduce minor Nb into duplex stainless steels (DSSs) to form inclusion@Z core-shell structures, thus isolating the inclusions from corrosive environments. Additionally, both the Z phase and its surrounding matrix possess excellent corrosion resistance. Thus, this strategy effectively prevents corrosion caused by inclusions, thereby doubly improving the corrosion resistance of DSSs. Our strategy overcomes the long-standing problem of “corrosion failure caused by inclusions”, and it is verified as a universal technique in a series of DSSs and industrial production.

Suggested Citation

  • Shucai Zhang & Hao Feng & Huabing Li & Zhouhua Jiang & Tao Zhang & Hongchun Zhu & Yue Lin & Wei Zhang & Guoping Li, 2023. "Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43752-8
    DOI: 10.1038/s41467-023-43752-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43752-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43752-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mary P. Ryan & David E. Williams & Richard J. Chater & Bernie M. Hutton & David S. McPhail, 2002. "Why stainless steel corrodes," Nature, Nature, vol. 415(6873), pages 770-774, February.
    2. B. Zhang & J. Wang & B. Wu & X. W. Guo & Y. J. Wang & D. Chen & Y. C. Zhang & K. Du & E. E. Oguzie & X. L. Ma, 2018. "Unmasking chloride attack on the passive film of metals," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. X. X. Wei & B. Zhang & B. Wu & Y. J. Wang & X. H. Tian & L. X. Yang & E. E. Oguzie & X. L. Ma, 2022. "Enhanced corrosion resistance by engineering crystallography on metals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. D. Bowden & Y. Krysiak & L. Palatinus & D. Tsivoulas & S. Plana-Ruiz & E. Sarakinou & U. Kolb & D. Stewart & M. Preuss, 2018. "A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Masaki Taneike & Fujio Abe & Kota Sawada, 2003. "Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions," Nature, Nature, vol. 424(6946), pages 294-296, July.
    6. Congcong Du & Shenbao Jin & Yuan Fang & Jin Li & Shenyang Hu & Tingting Yang & Ying Zhang & Jianyu Huang & Gang Sha & Yugang Wang & Zhongxia Shang & Xinghang Zhang & Baoru Sun & Shengwei Xin & Tongde , 2018. "Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Suihe Jiang & Hui Wang & Yuan Wu & Xiongjun Liu & Honghong Chen & Mengji Yao & Baptiste Gault & Dirk Ponge & Dierk Raabe & Akihiko Hirata & Mingwei Chen & Yandong Wang & Zhaoping Lu, 2017. "Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation," Nature, Nature, vol. 544(7651), pages 460-464, April.
    8. Q. Meng & G. S. Frankel & H. O. Colijn & S. H. Goss, 2003. "Stainless-steel corrosion and MnS inclusions," Nature, Nature, vol. 424(6947), pages 389-390, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shohini Sen-Britain & Seongkoo Cho & ShinYoung Kang & Zhen Qi & Saad Khairallah & Debra Rosas & Vanna Som & Tian T. Li & S. Roger Qiu & Y. Morris Wang & Brandon C. Wood & Thomas Voisin, 2024. "Critical role of slags in pitting corrosion of additively manufactured stainless steel in simulated seawater," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Shenghua Wu & Hanne S. Soreide & Bin Chen & Jianjun Bian & Chong Yang & Chunan Li & Peng Zhang & Pengming Cheng & Jinyu Zhang & Yong Peng & Gang Liu & Yanjun Li & Hans J. Roven & Jun Sun, 2022. "Freezing solute atoms in nanograined aluminum alloys via high-density vacancies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. X. X. Wei & B. Zhang & B. Wu & Y. J. Wang & X. H. Tian & L. X. Yang & E. E. Oguzie & X. L. Ma, 2022. "Enhanced corrosion resistance by engineering crystallography on metals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Chengbin Jin & Yiyu Huang & Lanhang Li & Guoying Wei & Hongyan Li & Qiyao Shang & Zhijin Ju & Gongxun Lu & Jiale Zheng & Ouwei Sheng & Xinyong Tao, 2023. "A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Sheng Xu & Takumi Odaira & Shunsuke Sato & Xiao Xu & Toshihiro Omori & Stefanus Harjo & Takuro Kawasaki & Hanuš Seiner & Kristýna Zoubková & Yasukazu Murakami & Ryosuke Kainuma, 2022. "Non-Hookean large elastic deformation in bulk crystalline metals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Qingfeng Wu & Feng He & Junjie Li & Hyoung Seop Kim & Zhijun Wang & Jincheng Wang, 2022. "Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Kaifa Du & Enlai Gao & Chunbo Zhang & Yongsong Ma & Peilin Wang & Rui Yu & Wenmiao Li & Kaiyuan Zheng & Xinhua Cheng & Diyong Tang & Bowen Deng & Huayi Yin & Dihua Wang, 2023. "An iron-base oxygen-evolution electrode for high-temperature electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Yang Yang & Weiyue Zhou & Sheng Yin & Sarah Y. Wang & Qin Yu & Matthew J. Olszta & Ya-Qian Zhang & Steven E. Zeltmann & Mingda Li & Miaomiao Jin & Daniel K. Schreiber & Jim Ciston & M. C. Scott & John, 2023. "One dimensional wormhole corrosion in metals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Ramaraj Sukanya & Tara N. Barwa & Yiran Luo & Eithne Dempsey & Carmel B. Breslin, 2022. "Emerging Layered Materials and Their Applications in the Corrosion Protection of Metals and Alloys," Sustainability, MDPI, vol. 14(7), pages 1-28, March.
    12. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Chengpeng Yang & Bozhao Zhang & Libo Fu & Zhanxin Wang & Jiao Teng & Ruiwen Shao & Ziqi Wu & Xiaoxue Chang & Jun Ding & Lihua Wang & Xiaodong Han, 2023. "Chemical inhomogeneity–induced profuse nanotwinning and phase transformation in AuCu nanowires," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Guo, Junyan & Gao, Ruihong & Tong, Zhaoming & Zhang, Haijun & Duan, Hongjuan & Huang, Liang & Lu, Lilin & Jia, Quanli & Zhang, Shaowei, 2023. "Three eagles with one arrow: Simultaneous production of hydrogen, aluminum ethoxide, and supported metal catalysts via efficient and facile reaction between aluminum and ethanol," Energy, Elsevier, vol. 263(PD).
    17. Joonoh Moon & Gyuyeol Bae & Bo-Young Jeong & Chansun Shin & Min-Ji Kwon & Dong-Ik Kim & Dong-Jun Choi & Bong Ho Lee & Chang-Hoon Lee & Hyun-Uk Hong & Dong-Woo Suh & Dirk Ponge, 2024. "Ultrastrong and ductile steel welds achieved by fine interlocking microstructures with film-like retained austenite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Shuang Li & Li Yang & Jijo Christudasjustus & Nicole R. Overman & Brian D. Wirth & Maria L. Sushko & Pauline Simonnin & Daniel K. Schreiber & Fei Gao & Chongmin Wang, 2024. "Selective atomic sieving across metal/oxide interface for super-oxidation resistance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Zhiyang Zheng & Xiongwei Zhong & Qi Zhang & Mengtian Zhang & Lixin Dai & Xiao Xiao & Jiahe Xu & Miaolun Jiao & Boran Wang & Hong Li & Yeyang Jia & Rui Mao & Guangmin Zhou, 2024. "An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43752-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.