IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46650-9.html
   My bibliography  Save this article

Vortex-based soft magnetic composite with ultrastable permeability up to gigahertz frequencies

Author

Listed:
  • Guohua Bai

    (Hangzhou Dianzi University)

  • Jiayi Sun

    (Hangzhou Dianzi University)

  • Zhenhua Zhang

    (Hangzhou Dianzi University)

  • Xiaolian Liu

    (Hangzhou Dianzi University)

  • Sateesh Bandaru

    (Hangzhou Dianzi University)

  • Weiwei Liu

    (Hangzhou Dianzi University)

  • Zhong Li

    (Hangzhou Dianzi University)

  • Hongxia Li

    (Hangzhou Dianzi University)

  • Ningning Wang

    (Hangzhou Dianzi University)

  • Xuefeng Zhang

    (Hangzhou Dianzi University)

Abstract

Soft magnetic materials with stable permeability up to hundreds of megahertz (MHz) are urgently needed for integrated transformers and inductors, which are crucial in the more-than-Moore era. However, traditional frequency-stable soft magnetic ferrites suffer from low saturation magnetization and temperature instability, making them unsuitable for integrated circuits. Herein, we fabricate a frequency-stable soft magnetic composite featuring a magnetic vortex structure via cold-sintering, where ultrafine FeSiAl particles are magnetically isolated and covalently bonded by Al2SiO5/SiO2/Fe2(MoO4)3 multilayered heterostructure. This construction results in an ultrastable permeability of 13 up to 1 gigahertz (GHz), relatively large saturation magnetization of 105 Am2/kg and low coercivity of 48 A/m, which we ascribe to the elimination of domain walls associated with almost uniform single-vortex structures, as observed by Lorentz transmission electron microscopy and reconstructed by micromagnetic simulation. Moreover, the ultimate compressive strength has been simultaneously increased up to 337.1 MPa attributed to the epitaxially grown interfaces between particles. This study deepens our understanding on the characteristics of magnetic vortices and provides alternative concept for designing integrated magnetic devices.

Suggested Citation

  • Guohua Bai & Jiayi Sun & Zhenhua Zhang & Xiaolian Liu & Sateesh Bandaru & Weiwei Liu & Zhong Li & Hongxia Li & Ningning Wang & Xuefeng Zhang, 2024. "Vortex-based soft magnetic composite with ultrastable permeability up to gigahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46650-9
    DOI: 10.1038/s41467-024-46650-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46650-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46650-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Dussaux & B. Georges & J. Grollier & V. Cros & A.V. Khvalkovskiy & A. Fukushima & M. Konoto & H. Kubota & K. Yakushiji & S. Yuasa & K.A. Zvezdin & K. Ando & A. Fert, 2010. "Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions," Nature Communications, Nature, vol. 1(1), pages 1-6, December.
    2. Liuliu Han & Fernando Maccari & Isnaldi R. Souza Filho & Nicolas J. Peter & Ye Wei & Baptiste Gault & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2022. "A mechanically strong and ductile soft magnet with extremely low coercivity," Nature, Nature, vol. 608(7922), pages 310-316, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Liuliu Han & Fernando Maccari & Ivan Soldatov & Nicolas J. Peter & Isnaldi R. Souza Filho & Rudolf Schäfer & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2023. "Strong and ductile high temperature soft magnets through Widmanstätten precipitates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Chengyi Yu & Kun Lin & Qinghua Zhang & Huihui Zhu & Ke An & Yan Chen & Dunji Yu & Tianyi Li & Xiaoqian Fu & Qian Yu & Li You & Xiaojun Kuang & Yili Cao & Qiang Li & Jinxia Deng & Xianran Xing, 2024. "An isotropic zero thermal expansion alloy with super-high toughness," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Ge Wu & Chang Liu & Yong-Qiang Yan & Sida Liu & Xinyu Ma & Shengying Yue & Zhi-Wei Shan, 2024. "Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Shuya Zhu & Dingshun Yan & Yong Zhang & Liuliu Han & Dierk Raabe & Zhiming Li, 2024. "Strong and ductile Resinvar alloys with temperature- and time-independent resistivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Chengyi Yu & Kun Lin & Xin Chen & Suihe Jiang & Yili Cao & Wenjie Li & Liang Chen & Ke An & Yan Chen & Dunji Yu & Kenichi Kato & Qinghua Zhang & Lin Gu & Li You & Xiaojun Kuang & Hui Wu & Qiang Li & J, 2023. "Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Vincent Cros & Paolo Bortolotti & Maxence Ernoult & Damien Querlioz & Julie Grol, 2022. "Binding events through the mutual synchronization of spintronic nano-neurons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46650-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.