IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55547-6.html
   My bibliography  Save this article

Selectively expressed RNA molecules as a versatile tool for functionalized cell targeting

Author

Listed:
  • Frederik Rastfeld

    (Research Centre Juelich)

  • Marco Hoffmann

    (Research Centre Juelich)

  • Sylvie Krüger

    (Research Centre Juelich)

  • Patrick Bohn

    (Helmholtz Centre for Infection Research)

  • Anne-Sophie Gribling-Burrer

    (Helmholtz Centre for Infection Research
    UPR9002)

  • Laura Wagner

    (Research Centre Juelich)

  • Nils Hersch

    (Research Centre Juelich)

  • Carina Stegmayr

    (Research Centre Juelich)

  • Lukas Lövenich

    (Research Centre Juelich)

  • Sven Gerlach

    (Research Centre Juelich)

  • Daniel Köninger

    (Research Centre Juelich)

  • Christina Hoffmann

    (Research Centre Juelich)

  • Helene L. Walter

    (Research Centre Juelich
    Department of Neurology)

  • Dirk Wiedermann

    (Multimodal Imaging Group)

  • Hajaani Manoharan

    (Research Centre Juelich)

  • Gereon R. Fink

    (Research Centre Juelich
    Department of Neurology)

  • Rudolf Merkel

    (Research Centre Juelich)

  • Heribert Bohlen

    (SRTD biotech GmbH)

  • Redmond P. Smyth

    (Helmholtz Centre for Infection Research
    UPR9002)

  • Maria A. Rueger

    (Research Centre Juelich
    Department of Neurology)

  • Bernd Hoffmann

    (Research Centre Juelich)

Abstract

Targeting of diseased cells is one of the most urgently needed prerequisites for a next generation of potent pharmaceuticals. Different approaches pursued fail mainly due to a lack of specific surface markers. Developing an RNA-based methodology, we can now ensure precise cell targeting combined with selective expression of effector proteins for therapy, diagnostics or cell steering. The specific combination of the molecular properties of antisense technology and mRNA therapy with functional RNA secondary structures allowed us to develop selectively expressed RNA molecules for medical applications. These seRNAs remain inactive in non-target cells and induce translation by partial degradation only in preselected cell types of interest. Cell specificity and type of functionalization are easily adaptable based on a modular system. In proof-of-concept studies we use seRNAs as platform technology for highly selective cell targeting. We effectively treat breast tumor cell clusters in mixed cell systems and shrink early U87 glioblastoma cell clusters in the brain of male mice without detectable side effects. Our data open up potential avenues for various therapeutic applications.

Suggested Citation

  • Frederik Rastfeld & Marco Hoffmann & Sylvie Krüger & Patrick Bohn & Anne-Sophie Gribling-Burrer & Laura Wagner & Nils Hersch & Carina Stegmayr & Lukas Lövenich & Sven Gerlach & Daniel Köninger & Chris, 2025. "Selectively expressed RNA molecules as a versatile tool for functionalized cell targeting," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55547-6
    DOI: 10.1038/s41467-024-55547-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55547-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55547-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongjun Qian & Jiayun Li & Shengli Zhao & Elizabeth A. Matthews & Michael Adoff & Weixin Zhong & Xu An & Michele Yeo & Christine Park & Xiaolu Yang & Bor-Shuen Wang & Derek G. Southwell & Z. Josh Huan, 2022. "Programmable RNA sensing for cell monitoring and manipulation," Nature, Nature, vol. 610(7933), pages 713-721, October.
    2. Daniel Rosenblum & Nitin Joshi & Wei Tao & Jeffrey M. Karp & Dan Peer, 2018. "Progress and challenges towards targeted delivery of cancer therapeutics," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Corbin E. Meacham & Sean J. Morrison, 2013. "Tumour heterogeneity and cancer cell plasticity," Nature, Nature, vol. 501(7467), pages 328-337, September.
    4. Xu Han & Weidong Liu & Jian-Wen Huang & Jiantao Ma & Yingying Zheng & Tzu-Ping Ko & Limin Xu & Ya-Shan Cheng & Chun-Chi Chen & Rey-Ting Guo, 2017. "Structural insight into catalytic mechanism of PET hydrolase," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    5. Tuo Wei & Qiang Cheng & Yi-Li Min & Eric N. Olson & Daniel J. Siegwart, 2020. "Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seong Eun Lee & Seongyeol Park & Shinae Yi & Na Rae Choi & Mi Ae Lim & Jae Won Chang & Ho-Ryun Won & Je Ryong Kim & Hye Mi Ko & Eun-Jae Chung & Young Joo Park & Sun Wook Cho & Hyeong Won Yu & June You, 2024. "Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    3. Humberto Contreras-Trujillo & Jiya Eerdeng & Samir Akre & Du Jiang & Jorge Contreras & Basia Gala & Mary C. Vergel-Rodriguez & Yeachan Lee & Aparna Jorapur & Areen Andreasian & Lisa Harton & Charles S, 2021. "Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Milan Gautam & Antony Jozic & Grace Li-Na Su & Marco Herrera-Barrera & Allison Curtis & Sebastian Arrizabalaga & Wayne Tschetter & Renee C. Ryals & Gaurav Sahay, 2023. "Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yu Zhou & Peike Sheng & Jiayi Li & Yudan Li & Mingyi Xie & Alexander A. Green, 2024. "Conditional RNA interference in mammalian cells via RNA transactivation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Bowen Li & Jianwu Tian & Fu Zhang & Chongzhi Wu & Zhiyao Li & Dandan Wang & Jiahao Zhuang & Siqin Chen & Wentao Song & Yufu Tang & Yuan Ping & Bin Liu, 2024. "Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Ziyang Cao & Dongdong Li & Liang Zhao & Mengting Liu & Pengyue Ma & Yingli Luo & Xianzhu Yang, 2022. "Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Haralampos Hatzikirou & Nikos I. Kavallaris & Marta Leocata, 2021. "A Novel Averaging Principle Provides Insights in the Impact of Intratumoral Heterogeneity on Tumor Progression," Mathematics, MDPI, vol. 9(20), pages 1-27, October.
    9. Chaoyu Wang & Ruoshi Zhang & Jia He & Lvshan Yu & Xinyan Li & Junxia Zhang & Sai Li & Conggang Zhang & Jonathan C. Kagan & Jeffrey M. Karp & Rui Kuai, 2023. "Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Yu Yang & Jian Min & Ting Xue & Pengcheng Jiang & Xin Liu & Rouming Peng & Jian-Wen Huang & Yingying Qu & Xian Li & Ning Ma & Fang-Chang Tsai & Longhai Dai & Qi Zhang & Yingle Liu & Chun-Chi Chen & Re, 2023. "Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Kriti Shrivastava & Ankur Jain, 2024. "Sustainable electrode material from waste plastic for modern energy storage devices," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    12. Yining Zhu & Ruochen Shen & Ivan Vuong & Rebekah A. Reynolds & Melanie J. Shears & Zhi-Cheng Yao & Yizong Hu & Won June Cho & Jiayuan Kong & Sashank K. Reddy & Sean C. Murphy & Hai-Quan Mao, 2022. "Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Albert H Gough & Ning Chen & Tong Ying Shun & Timothy R Lezon & Robert C Boltz & Celeste E Reese & Jacob Wagner & Lawrence A Vernetti & Jennifer R Grandis & Adrian V Lee & Andrew M Stern & Mark E Schu, 2014. "Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    14. Yanying Wang & Jing Wang & Xiaoyu Li & Xushen Xiong & Jianyi Wang & Ziheng Zhou & Xiaoxiao Zhu & Yang Gu & Dan Dominissini & Lei He & Yong Tian & Chengqi Yi & Zusen Fan, 2021. "N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    15. Miranda V. Hunter & Reuben Moncada & Joshua M. Weiss & Itai Yanai & Richard M. White, 2021. "Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    16. Junbin Gao & Hanfeng Qin & Fei Wang & Lu Liu & Hao Tian & Hong Wang & Shuanghu Wang & Juanfeng Ou & Yicheng Ye & Fei Peng & Yingfeng Tu, 2023. "Hyperthermia-triggered biomimetic bubble nanomachines," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Tuo Wei & Yehui Sun & Qiang Cheng & Sumanta Chatterjee & Zachary Traylor & Lindsay T. Johnson & Melissa L. Coquelin & Jialu Wang & Michael J. Torres & Xizhen Lian & Xu Wang & Yufen Xiao & Craig A. Hod, 2023. "Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Sun, Huiru & Chen, Jing & Ji, Xiang & Karunakaran, Gajanan & Chen, Bingbing & Ranjith, Pathegama Gamage & Song, Yongchen & Yang, Mingjun, 2024. "Optimizing CO2 hydrate storage: Dynamics and stability of hydrate caps in submarine sediments," Applied Energy, Elsevier, vol. 376(PB).
    19. Trishnamoni Gautom & Dharmendra Dheeman & Colin Levy & Thomas Butterfield & Guadalupe Alvarez Gonzalez & Philip Roy & Lewis Caiger & Karl Fisher & Linus Johannissen & Neil Dixon, 2021. "Structural basis of terephthalate recognition by solute binding protein TphC," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Josefine Radke & Elisa Schumann & Julia Onken & Randi Koll & Güliz Acker & Bohdan Bodnar & Carolin Senger & Sascha Tierling & Markus Möbs & Peter Vajkoczy & Anna Vidal & Sandra Högler & Petra Kodajova, 2022. "Decoding molecular programs in melanoma brain metastases," Nature Communications, Nature, vol. 13(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55547-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.