IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259462.html
   My bibliography  Save this article

Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning

Author

Listed:
  • Remy Elbez
  • Jeff Folz
  • Alan McLean
  • Hernan Roca
  • Joseph M Labuz
  • Kenneth J Pienta
  • Shuichi Takayama
  • Raoul Kopelman

Abstract

We define cell morphodynamics as the cell’s time dependent morphology. It could be called the cell’s shape shifting ability. To measure it we use a biomarker free, dynamic histology method, which is based on multiplexed Cell Magneto-Rotation and Machine Learning. We note that standard studies looking at cells immobilized on microscope slides cannot reveal their shape shifting, no more than pinned butterfly collections can reveal their flight patterns. Using cell magnetorotation, with the aid of cell embedded magnetic nanoparticles, our method allows each cell to move freely in 3 dimensions, with a rapid following of cell deformations in all 3-dimensions, so as to identify and classify a cell by its dynamic morphology. Using object recognition and machine learning algorithms, we continuously measure the real-time shape dynamics of each cell, where from we successfully resolve the inherent broad heterogeneity of the morphological phenotypes found in a given cancer cell population. In three illustrative experiments we have achieved clustering, differentiation, and identification of cells from (A) two distinct cell lines, (B) cells having gone through the epithelial-to-mesenchymal transition, and (C) cells differing only by their motility. This microfluidic method may enable a fast screening and identification of invasive cells, e.g., metastatic cancer cells, even in the absence of biomarkers, thus providing a rapid diagnostics and assessment protocol for effective personalized cancer therapy.

Suggested Citation

  • Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0259462
    DOI: 10.1371/journal.pone.0259462
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259462
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259462&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Corbin E. Meacham & Sean J. Morrison, 2013. "Tumour heterogeneity and cancer cell plasticity," Nature, Nature, vol. 501(7467), pages 328-337, September.
    2. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    2. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    3. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    4. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    5. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    7. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    8. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    9. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    12. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    13. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    14. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    15. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    16. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.
    17. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    18. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    19. repec:bny:wpaper:0088 is not listed on IDEAS
    20. Yuanchao Emily Bo & David V. Budescu & Charles Lewis & Philip E. Tetlock & Barbara Mellers, 2017. "An IRT forecasting model: linking proper scoring rules to item response theory," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(2), pages 90-103, March.
    21. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.