IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-02255-z.html
   My bibliography  Save this article

Structural insight into catalytic mechanism of PET hydrolase

Author

Listed:
  • Xu Han

    (Chinese Academy of Sciences)

  • Weidong Liu

    (Chinese Academy of Sciences)

  • Jian-Wen Huang

    (AsiaPac Biotechnology Co., Ltd)

  • Jiantao Ma

    (Chinese Academy of Sciences
    Jiangnan University)

  • Yingying Zheng

    (Chinese Academy of Sciences)

  • Tzu-Ping Ko

    (Academia Sinica)

  • Limin Xu

    (AsiaPac Biotechnology Co., Ltd)

  • Ya-Shan Cheng

    (AsiaPac Biotechnology Co., Ltd)

  • Chun-Chi Chen

    (Chinese Academy of Sciences)

  • Rey-Ting Guo

    (Chinese Academy of Sciences)

Abstract

PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

Suggested Citation

  • Xu Han & Weidong Liu & Jian-Wen Huang & Jiantao Ma & Yingying Zheng & Tzu-Ping Ko & Limin Xu & Ya-Shan Cheng & Chun-Chi Chen & Rey-Ting Guo, 2017. "Structural insight into catalytic mechanism of PET hydrolase," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02255-z
    DOI: 10.1038/s41467-017-02255-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02255-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02255-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwaseok Hong & Dongwoo Ki & Hogyun Seo & Jiyoung Park & Jaewon Jang & Kyung-Jin Kim, 2023. "Discovery and rational engineering of PET hydrolase with both mesophilic and thermophilic PET hydrolase properties," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yu Yang & Jian Min & Ting Xue & Pengcheng Jiang & Xin Liu & Rouming Peng & Jian-Wen Huang & Yingying Qu & Xian Li & Ning Ma & Fang-Chang Tsai & Longhai Dai & Qi Zhang & Yingle Liu & Chun-Chi Chen & Re, 2023. "Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Trishnamoni Gautom & Dharmendra Dheeman & Colin Levy & Thomas Butterfield & Guadalupe Alvarez Gonzalez & Philip Roy & Lewis Caiger & Karl Fisher & Linus Johannissen & Neil Dixon, 2021. "Structural basis of terephthalate recognition by solute binding protein TphC," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Zhuozhi Chen & Rongdi Duan & Yunjie Xiao & Yi Wei & Hanxiao Zhang & Xinzhao Sun & Shen Wang & Yingying Cheng & Xue Wang & Shanwei Tong & Yunxiao Yao & Cheng Zhu & Haitao Yang & Yanyan Wang & Zefang Wa, 2022. "Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Anni Li & Yijie Sheng & Haiyang Cui & Minghui Wang & Luxuan Wu & Yibo Song & Rongrong Yang & Xiujuan Li & He Huang, 2023. "Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. P. Konstantin Richter & Paula Blázquez-Sánchez & Ziyue Zhao & Felipe Engelberger & Christian Wiebeler & Georg Künze & Ronny Frank & Dana Krinke & Emanuele Frezzotti & Yuliia Lihanova & Patricia Falken, 2023. "Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02255-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.