IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42189-3.html
   My bibliography  Save this article

Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina

Author

Listed:
  • Milan Gautam

    (Oregon State University)

  • Antony Jozic

    (Oregon State University)

  • Grace Li-Na Su

    (Oregon Health & Science University)

  • Marco Herrera-Barrera

    (Oregon State University)

  • Allison Curtis

    (Oregon Health & Science University)

  • Sebastian Arrizabalaga

    (Oregon Health & Science University)

  • Wayne Tschetter

    (Oregon Health & Science University)

  • Renee C. Ryals

    (Oregon Health & Science University)

  • Gaurav Sahay

    (Oregon State University
    Oregon Health & Science University
    Oregon Health & Science University)

Abstract

Ocular delivery of lipid nanoparticle (LNPs) packaged mRNA can enable efficient gene delivery and editing. We generated LNP variants through the inclusion of positively charged-amine-modified polyethylene glycol (PEG)-lipids (LNPa), negatively charged-carboxyl-(LNPz) and carboxy-ester (LNPx) modified PEG-lipids, and neutral unmodified PEG-lipids (LNP). Subretinal injections of LNPa containing Cre mRNA in the mouse show tdTomato signal in the retinal pigmented epithelium (RPE) like conventional LNPs. Unexpectedly, LNPx and LNPz show 27% and 16% photoreceptor transfection, respectively, with striking localization extending from the photoreceptor synaptic pedicle to the outer segments, displaying pan-retinal distribution in the photoreceptors and RPE. LNPx containing Cas9 mRNA and sgAi9 leads to the formation of an oval elongated structure with a neutral charge resulting in 16.4% editing restricted to RPE. Surface modifications of LNPs with PEG variants can alter cellular tropism of mRNA. LNPs enable genome editing in the retina and in the future can be used to correct genetic mutations that lead to blindness.

Suggested Citation

  • Milan Gautam & Antony Jozic & Grace Li-Na Su & Marco Herrera-Barrera & Allison Curtis & Sebastian Arrizabalaga & Wayne Tschetter & Renee C. Ryals & Gaurav Sahay, 2023. "Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42189-3
    DOI: 10.1038/s41467-023-42189-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42189-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42189-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianhang Yin & Kailun Fang & Yanxia Gao & Liqiong Ou & Shaopeng Yuan & Changchang Xin & Weiwei Wu & Wei-wei Wu & Jiaxu Hong & Hui Yang & Jiazhi Hu, 2022. "Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Lukas Gerasimavicius & Benjamin J. Livesey & Joseph A. Marsh, 2022. "Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Zhouhuan Xi & Abhishek Vats & José-Alain Sahel & Yuanyuan Chen & Leah C. Byrne, 2022. "Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Killian S. Hanlon & Benjamin P. Kleinstiver & Sara P. Garcia & Mikołaj P. Zaborowski & Adrienn Volak & Stefan E. Spirig & Alissa Muller & Alexander A. Sousa & Shengdar Q. Tsai & Niclas E. Bengtsson & , 2019. "High levels of AAV vector integration into CRISPR-induced DNA breaks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Tuo Wei & Qiang Cheng & Yi-Li Min & Eric N. Olson & Daniel J. Siegwart, 2020. "Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Lisa Maria Riedmayr & Klara Sonnie Hinrichsmeyer & Stefan Bernhard Thalhammer & David Manuel Mittas & Nina Karguth & Dina Yehia Otify & Sybille Böhm & Valentin Johannes Weber & Michael David Bartosche, 2023. "mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Kian Hong Kock & Patrick K. Kimes & Stephen S. Gisselbrecht & Sachi Inukai & Sabrina K. Phanor & James T. Anderson & Gayatri Ramakrishnan & Colin H. Lipper & Dongyuan Song & Jesse V. Kurland & Julia M, 2024. "DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Jianhang Yin & Kailun Fang & Yanxia Gao & Liqiong Ou & Shaopeng Yuan & Changchang Xin & Weiwei Wu & Wei-wei Wu & Jiaxu Hong & Hui Yang & Jiazhi Hu, 2022. "Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Yining Zhu & Ruochen Shen & Ivan Vuong & Rebekah A. Reynolds & Melanie J. Shears & Zhi-Cheng Yao & Yizong Hu & Won June Cho & Jiayuan Kong & Sashank K. Reddy & Sean C. Murphy & Hai-Quan Mao, 2022. "Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Tuo Wei & Yehui Sun & Qiang Cheng & Sumanta Chatterjee & Zachary Traylor & Lindsay T. Johnson & Melissa L. Coquelin & Jialu Wang & Michael J. Torres & Xizhen Lian & Xu Wang & Yufen Xiao & Craig A. Hod, 2023. "Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Ron Baik & M. Kyle Cromer & Steve E. Glenn & Christopher A. Vakulskas & Kay O. Chmielewski & Amanda M. Dudek & William N. Feist & Julia Klermund & Suzette Shipp & Toni Cathomen & Daniel P. Dever & Mat, 2024. "Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Jianli Tao & Qi Wang & Carlos Mendez-Dorantes & Kathleen H. Burns & Roberto Chiarle, 2022. "Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Mohamed Fareh & Wei Zhao & Wenxin Hu & Joshua M. L. Casan & Amit Kumar & Jori Symons & Jennifer M. Zerbato & Danielle Fong & Ilia Voskoboinik & Paul G. Ekert & Rajeev Rudraraju & Damian F. J. Purcell , 2021. "Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    12. Eriya Kenjo & Hiroyuki Hozumi & Yukimasa Makita & Kumiko A. Iwabuchi & Naoko Fujimoto & Satoru Matsumoto & Maya Kimura & Yuichiro Amano & Masataka Ifuku & Youichi Naoe & Naoto Inukai & Akitsu Hotta, 2021. "Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    13. Jingjing Ren & Xiaofeng Liao & Julia M. Lewis & Jungsoo Chang & Rihao Qu & Kacie R. Carlson & Francine Foss & Michael Girardi, 2024. "Generation and optimization of off-the-shelf immunotherapeutics targeting TCR-Vβ2+ T cell malignancy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Changchang Xin & Jianhang Yin & Shaopeng Yuan & Liqiong Ou & Mengzhu Liu & Weiwei Zhang & Jiazhi Hu, 2022. "Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Francesco Cicconardi & Edoardo Milanetti & Erika C. Pinheiro de Castro & Anyi Mazo-Vargas & Steven M. Van Belleghem & Angelo Alberto Ruggieri & Pasi Rastas & Joseph Hanly & Elizabeth Evans & Chris D. , 2023. "Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    16. Xiang Meng & Ruixuan Jia & Xinping Zhao & Fan Zhang & Shaohong Chen & Shicheng Yu & Xiaozhen Liu & Hongliang Dou & Xuefeng Feng & Jinlu Zhang & Ni Wang & Boling Xu & Liping Yang, 2024. "In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42189-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.