Author
Listed:
- Margriet M Palm
- Marjet Elemans
- Joost B Beltman
Abstract
Tumors consist of a hierarchical population of cells that differ in their phenotype and genotype. This hierarchical organization of cells means that a few clones (i.e., cells and several generations of offspring) are abundant while most are rare, which is called clonal dominance. Such dominance also occurred in published in vitro iterated growth and passage experiments with tumor cells in which genetic barcodes were used for lineage tracing. A potential source for such heterogeneity is that dominant clones derive from cancer stem cells with an unlimited self-renewal capacity. Furthermore, ongoing evolution and selection within the growing population may also induce clonal dominance. To understand how clonal dominance developed in the iterated growth and passage experiments, we built a computational model that accurately simulates these experiments. The model simulations reproduced the clonal dominance that developed in in vitro iterated growth and passage experiments when the division rates vary between cells, due to a combination of initial variation and of ongoing mutational processes. In contrast, the experimental results can neither be reproduced with a model that considers random growth and passage, nor with a model based on cancer stem cells. Altogether, our model suggests that in vitro clonal dominance develops due to selection of fast-dividing clones.Author summary: Tumors consist of numerous cell populations, i.e., clones, that differ with respect to genotype, and potentially with respect to phenotype, and these populations strongly differ in their size. A limited number of clones tend to dominate tumors, but it remains unclear how this clonal dominance arises. Potential driving mechanisms are the presence of cancer stem cells, which either divide indefinitely of differentiate into cells with a limited division potential, and ongoing evolutionary processes within the tumor. Here we use a computational model to understand how clonal dominance developed during in vitro growth and passage experiments with cancer cells. Incorporating cancer stem cells in this model did not result in a match between simulations and in vitro data. In contrast, by considering all cells to divide indefinitely and division rates to evolve due to the combination of division rate variability and selection by passage, our model closely matches the in vitro data.
Suggested Citation
Margriet M Palm & Marjet Elemans & Joost B Beltman, 2018.
"Heritable tumor cell division rate heterogeneity induces clonal dominance,"
PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-19, February.
Handle:
RePEc:plo:pcbi00:1005954
DOI: 10.1371/journal.pcbi.1005954
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005954. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.