IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19390-9.html
   My bibliography  Save this article

Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae

Author

Listed:
  • Monica I. Espinosa

    (Macquarie University
    CSIRO Synthetic Biology Future Science Platform)

  • Ricardo A. Gonzalez-Garcia

    (The University of Queensland)

  • Kaspar Valgepea

    (The University of Queensland
    Institute of Technology, University of Tartu)

  • Manuel R. Plan

    (The University of Queensland
    The University of Queensland)

  • Colin Scott

    (CSIRO Synthetic Biology Future Science Platform
    Biocatalysis and Synthetic Biology Team, CSIRO Land & Water)

  • Isak S. Pretorius

    (Macquarie University)

  • Esteban Marcellin

    (The University of Queensland
    The University of Queensland)

  • Ian T. Paulsen

    (Macquarie University)

  • Thomas C. Williams

    (Macquarie University
    CSIRO Synthetic Biology Future Science Platform)

Abstract

Utilising one-carbon substrates such as carbon dioxide, methane, and methanol is vital to address the current climate crisis. Methylotrophic metabolism enables growth and energy generation from methanol, providing an alternative to sugar fermentation. Saccharomyces cerevisiae is an important industrial microorganism for which growth on one-carbon substrates would be relevant. However, its ability to metabolize methanol has been poorly characterised. Here, using adaptive laboratory evolution and 13C-tracer analysis, we discover that S. cerevisiae has a native capacity for methylotrophy. A systems biology approach reveals that global rearrangements in central carbon metabolism fluxes, gene expression changes, and a truncation of the uncharacterized transcriptional regulator Ygr067cp supports improved methylotrophy in laboratory evolved S. cerevisiae. This research paves the way for further biotechnological development and fundamental understanding of methylotrophy in the preeminent eukaryotic model organism and industrial workhorse, S. cerevisiae.

Suggested Citation

  • Monica I. Espinosa & Ricardo A. Gonzalez-Garcia & Kaspar Valgepea & Manuel R. Plan & Colin Scott & Isak S. Pretorius & Esteban Marcellin & Ian T. Paulsen & Thomas C. Williams, 2020. "Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19390-9
    DOI: 10.1038/s41467-020-19390-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19390-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19390-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Briardo Llorente & Thomas C. Williams & Hugh D. Goold & Isak S. Pretorius & Ian T. Paulsen, 2022. "Harnessing bioengineered microbes as a versatile platform for space nutrition," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Bernd M. Mitic & Christina Troyer & Lisa Lutz & Michael Baumschabl & Stephan Hann & Diethard Mattanovich, 2023. "The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO2 in the yeast Komagataella phaffii," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19390-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.