IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55106-z.html
   My bibliography  Save this article

A coopetition-driven strategy of parallel/perpendicular aromatic stacking enabling metastable supramolecular polymerization

Author

Listed:
  • Zhao Gao

    (Northwestern Polytechnical University)

  • Xuxu Xie

    (Northwestern Polytechnical University)

  • Juan Zhang

    (Northwestern Polytechnical University)

  • Wei Yuan

    (Nanyang Technological University)

  • Hongxia Yan

    (Northwestern Polytechnical University)

  • Wei Tian

    (Northwestern Polytechnical University)

Abstract

Metastable supramolecular polymerization under kinetic control has recently been recognized as a closer way to biosystem than thermodynamic process. While impressive works on metastable supramolecular systems have been reported, the library of available non-covalent driving modes is still small and a simple yet versatile solution is highly desirable to design for easily regulating the energy landscapes of metastable aggregation. Herein, we propose a coopetition-driven metastability strategy for parallel/perpendicular aromatic stacking to construct metastable supramolecular polymers derived from a class of simple monomers consisting of lateral indoles and aromatic core. By subtly increasing the stacking strength of aromatic cores from phenyl to anthryl, the parallel face-to-face stacked aggregates are competitively formed as metastable products, which spontaneously transform into thermodynamically favorable species through the cooperativity of perpendicular edge-to-face stacking and parallel offset stacking. The slow kinetic-to-thermodynamic transformation could be accelerated by adding seeds for realizing the desired living supramolecular polymerization. Besides, this transformation of parallel/perpendicular aromatic stacking accompanied by time-dependent emission change from red to yellow is employed to dynamic cell imaging, largely avoiding the background interferences. The coopetition relationship of different aromatic stacking for metastable supramolecular systems is expected to serve as an effective strategy towards pathway-controlled functional materials.

Suggested Citation

  • Zhao Gao & Xuxu Xie & Juan Zhang & Wei Yuan & Hongxia Yan & Wei Tian, 2024. "A coopetition-driven strategy of parallel/perpendicular aromatic stacking enabling metastable supramolecular polymerization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55106-z
    DOI: 10.1038/s41467-024-55106-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55106-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55106-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55106-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.