IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v184y2024ics0960077924006052.html
   My bibliography  Save this article

Dynein-driven self-organization of microtubules: An entropy- and network-based analysis

Author

Listed:
  • Frolov, Nikita
  • Bijnens, Bram
  • Ruiz-Reynés, Daniel
  • Gelens, Lendert

Abstract

Microtubules self-organize to form part of the cellular cytoskeleton. They give cells their shape and play a crucial role in cell division and intracellular transport. Strikingly, microtubules driven by motor proteins reorganize into stable mitotic/meiotic spindles with high spatial and temporal precision during successive cell division cycles. Although the topic has been extensively studied, the question remains: What defines such microtubule networks’ spatial order and robustness? Here, we aim to approach this problem by analyzing a simplified computational model of radial microtubule self-organization driven by a single type of motor protein — dyneins. We establish that the spatial order of the steady-state pattern is likely associated with the dynein-driven microtubule motility. At the same time, the structure of the microtubule network is likely linked to its connectivity at the beginning of self-organization. Using the continuous variation of dynein concentration, we reveal hysteresis in microtubule self-organization, ensuring the stability of radial filament structures.

Suggested Citation

  • Frolov, Nikita & Bijnens, Bram & Ruiz-Reynés, Daniel & Gelens, Lendert, 2024. "Dynein-driven self-organization of microtubules: An entropy- and network-based analysis," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924006052
    DOI: 10.1016/j.chaos.2024.115053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. J. Ndlec & T. Surrey & A. C. Maggs & S. Leibler, 1997. "Self-organization of microtubules and motors," Nature, Nature, vol. 389(6648), pages 305-308, September.
    2. Daniel A. Fletcher & R. Dyche Mullins, 2010. "Cell mechanics and the cytoskeleton," Nature, Nature, vol. 463(7280), pages 485-492, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gábor Pete & Ádám Timár & Sigurdur Örn Stefánsson & Ivan Bonamassa & Márton Pósfai, 2024. "Physical networks as network-of-networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Matt D. G. Hughes & Sophie Cussons & Benjamin S. Hanson & Kalila R. Cook & Tímea Feller & Najet Mahmoudi & Daniel L. Baker & Robert Ariëns & David A. Head & David J. Brockwell & Lorna Dougan, 2023. "Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Chao Jiang & Hong-Yu Luo & Xinpeng Xu & Shuo-Xing Dou & Wei Li & Dongshi Guan & Fangfu Ye & Xiaosong Chen & Ming Guo & Peng-Ye Wang & Hui Li, 2023. "Switch of cell migration modes orchestrated by changes of three-dimensional lamellipodium structure and intracellular diffusion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Muqing Cao & Xiaoxiao Zou & Chaoyi Li & Zaisheng Lin & Ni Wang & Zhongju Zou & Youqiong Ye & Joachim Seemann & Beth Levine & Zaiming Tang & Qing Zhong, 2023. "An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and primary ciliogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Wei Ming Lim & Wei-Xiang Chew & Arianna Esposito Verza & Marion Pesenti & Andrea Musacchio & Thomas Surrey, 2024. "Regulation of minimal spindle midzone organization by mitotic kinases," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Jiu-Tao Hang & Yu Kang & Guang-Kui Xu & Huajian Gao, 2021. "A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. Gaurav Luthria & Ran Li & Stephanie Wang & Mark Prytyskach & Rainer H. Kohler & Douglas A. Lauffenburger & Timothy J. Mitchison & Ralph Weissleder & Miles A. Miller, 2020. "In vivo microscopy reveals macrophage polarization locally promotes coherent microtubule dynamics in migrating cancer cells," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    10. Yuhang Zhang & Jingyi Du & Xian Liu & Fei Shang & Yunxin Deng & Jiaqing Ye & Yukai Wang & Jie Yan & Hu Chen & Miao Yu & Shimin Le, 2024. "Multi-domain interaction mediated strength-building in human α-actinin dimers unveiled by direct single-molecule quantification," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Suchet Nanda & Abram Calderon & Arya Sachan & Thanh-Thuy Duong & Johannes Koch & Xiaoyi Xin & Djamschid Solouk-Stahlberg & Yao-Wen Wu & Perihan Nalbant & Leif Dehmelt, 2023. "Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Venkat R. Chirasani & Mohammad Ashhar I. Khan & Juilee N. Malavade & Nikolay V. Dokholyan & Brenton D. Hoffman & Sharon L. Campbell, 2023. "Molecular basis and cellular functions of vinculin-actin directional catch bonding," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Jindal, Akriti & Gupta, Arvind Kumar, 2021. "Effect of local dissociation on symmetry breaking in exclusion model constituted by bridge lane and input-output TASEPs," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Teagan E. Bate & Megan E. Varney & Ezra H. Taylor & Joshua H. Dickie & Chih-Che Chueh & Michael M. Norton & Kun-Ta Wu, 2022. "Self-mixing in microtubule-kinesin active fluid from nonuniform to uniform distribution of activity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Jing He & Lin Qian & Zhuang Li & Yanpeng Wang & Kai Liu & Haibin Wei & Yuan Sun & Jiaoyan He & Ke Yao & Jiahao Weng & Xuanhan Hu & Dahong Zhang & Yong He, 2024. "A tissue bandage for pelvic ganglia injury," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Reena Kumari & Katharina Ven & Megan Chastney & Shrikant B. Kokate & Johan Peränen & Jesse Aaron & Konstantin Kogan & Leonardo Almeida-Souza & Elena Kremneva & Renaud Poincloux & Teng-Leong Chew & Pet, 2024. "Focal adhesions contain three specialized actin nanoscale layers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Alves Ribeiro, Marcus V. & Jurjiu, Aurel & Galiceanu, Mircea, 2022. "Dynamics of semiflexible generalized scale-free polymer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    18. Chrystian Junqueira Alves & Rafael Dariolli & Jonathan Haydak & Sangjo Kang & Theodore Hannah & Robert J. Wiener & Stefanie DeFronzo & Rut Tejero & Gabriele L. Gusella & Aarthi Ramakrishnan & Rodrigo , 2021. "Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    19. Antoine Vian & Marie Pochitaloff & Shuo-Ting Yen & Sangwoo Kim & Jennifer Pollock & Yucen Liu & Ellen M. Sletten & Otger Campàs, 2023. "In situ quantification of osmotic pressure within living embryonic tissues," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Mariafrancesca Cascione & Valeria De Matteis & Rosaria Rinaldi, 2019. "Cytomechanical Alterations Induced by Inorganic NPs," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 14(4), pages 1-2, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924006052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.