IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34827-z.html
   My bibliography  Save this article

Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes

Author

Listed:
  • Shixin Fa

    (Kyoto University
    Northwestern Polytechnical University)

  • Tan-hao Shi

    (Kyoto University)

  • Suzu Akama

    (Kyoto University)

  • Keisuke Adachi

    (Kyoto University)

  • Keisuke Wada

    (Kyoto University)

  • Seigo Tanaka

    (Kyoto University)

  • Naoki Oyama

    (Kyoto University)

  • Kenichi Kato

    (Kyoto University)

  • Shunsuke Ohtani

    (Kyoto University)

  • Yuuya Nagata

    (Hokkaido University)

  • Shigehisa Akine

    (Kanazawa University
    Kanazawa University)

  • Tomoki Ogoshi

    (Kyoto University
    Kanazawa University)

Abstract

Real time monitoring of chirality transfer processes is necessary to better understand their kinetic properties. Herein, we monitor an ideal chirality transfer process from a statistically random distribution to a diastereomerically pure assembly in real time. The chirality transfer is based on discrete trimeric tubular assemblies of planar chiral pillar[5]arenes, achieving the construction of diastereomerically pure trimers of pillar[5]arenes through synergistic effect of ion pairing between a racemic rim-differentiated pillar[5]arene pentaacid bearing five benzoic acids on one rim and five alkyl chains on the other, and an optically resolved pillar[5]arene decaamine bearing ten amines. When the decaamine is mixed with the pentaacid, the decaamine is sandwiched by two pentaacids through ten ion pairs, initially producing a statistically random mixture of a homochiral trimer and two heterochiral trimers. The heterochiral trimers gradually dissociate and reassemble into the homochiral trimers after unit flipping of the pentaacid, leading to chirality transfer from the decaamine and producing diastereomerically pure trimers.

Suggested Citation

  • Shixin Fa & Tan-hao Shi & Suzu Akama & Keisuke Adachi & Keisuke Wada & Seigo Tanaka & Naoki Oyama & Kenichi Kato & Shunsuke Ohtani & Yuuya Nagata & Shigehisa Akine & Tomoki Ogoshi, 2022. "Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34827-z
    DOI: 10.1038/s41467-022-34827-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34827-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34827-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter A. Korevaar & Subi J. George & Albert J. Markvoort & Maarten M. J. Smulders & Peter A. J. Hilbers & Albert P. H. J. Schenning & Tom F. A. De Greef & E. W. Meijer, 2012. "Pathway complexity in supramolecular polymerization," Nature, Nature, vol. 481(7382), pages 492-496, January.
    2. Nathan J. Van Zee & Beatrice Adelizzi & Mathijs F. J. Mabesoone & Xiao Meng & Antonio Aloi & R. Helen Zha & Martin Lutz & Ivo A. W. Filot & Anja R. A. Palmans & E. W. Meijer, 2018. "Potential enthalpic energy of water in oils exploited to control supramolecular structure," Nature, Nature, vol. 558(7708), pages 100-103, June.
    3. Xinchang Wang & Yu Wang & Huayan Yang & Hongxun Fang & Ruixue Chen & Yibin Sun & Nanfeng Zheng & Kai Tan & Xin Lu & Zhongqun Tian & Xiaoyu Cao, 2016. "Assembled molecular face-rotating polyhedra to transfer chirality from two to three dimensions," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo Fu & Yanli Zhao & Guofeng Liu, 2024. "Pathway-directed recyclable chirality inversion of coordinated supramolecular polymers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Zhen Wang & Qing-Pu Zhang & Fei Guo & Hui Ma & Zi-Hui Liang & Chang-Hai Yi & Chun Zhang & Chuan-Feng Chen, 2024. "Self-similar chiral organic molecular cages," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhenyu Yang & Chunyang Yu & Junjie Ding & Lihua Chen & Huiyu Liu & Yangzhi Ye & Pan Li & Jiaolong Chen & Kim Jiayi Wu & Qiang-Yu Zhu & Yu-Quan Zhao & Xiaoning Liu & Xiaodong Zhuang & Shaodong Zhang, 2021. "A class of organic cages featuring twin cavities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Qiong Chen & Zhaoyong Li & Ye Lei & Yixin Chen & Hua Tang & Guangcheng Wu & Bin Sun & Yuxi Wei & Tianyu Jiao & Songna Zhang & Feihe Huang & Linjun Wang & Hao Li, 2023. "The sharp structural switch of covalent cages mediated by subtle variation of directing groups," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Michael D. Dore & Muhammad Ghufran Rafique & Tianxiao Peter Yang & Marlo Zorman & Casey M. Platnich & Pengfei Xu & Tuan Trinh & Felix J. Rizzuto & Gonzalo Cosa & Jianing Li & Alba Guarné & Hanadi F. S, 2024. "Heat-activated growth of metastable and length-defined DNA fibers expands traditional polymer assembly," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Martina Crippa & Claudio Perego & Anna L. Marco & Giovanni M. Pavan, 2022. "Molecular communications in complex systems of dynamic supramolecular polymers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Dong-Xu Cui & Yun Geng & Jun-Ning Kou & Guo-Gang Shan & Chun-Yi Sun & Kun-Hao Zhang & Xin-Long Wang & Zhong-Min Su, 2022. "Chiral self-sorting and guest recognition of porous aromatic cages," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Joseph F. Woods & Lucía Gallego & Pauline Pfister & Mounir Maaloum & Andreas Vargas Jentzsch & Michel Rickhaus, 2022. "Shape-assisted self-assembly," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34827-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.