IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31094-w.html
   My bibliography  Save this article

A bioinspired sequential energy transfer system constructed via supramolecular copolymerization

Author

Listed:
  • Yifei Han

    (University of Science and Technology of China)

  • Xiaolong Zhang

    (University of Science and Technology of China)

  • Zhiqing Ge

    (University of Science and Technology of China)

  • Zhao Gao

    (Northwestern Polytechnical University)

  • Rui Liao

    (University of Science and Technology of China)

  • Feng Wang

    (University of Science and Technology of China)

Abstract

Sequential energy transfer is ubiquitous in natural light harvesting systems to make full use of solar energy. Although various artificial systems have been developed with the biomimetic sequential energy transfer character, most of them exhibit the overall energy transfer efficiency lower than 70% due to the disordered organization of donor/acceptor chromophores. Herein a sequential energy transfer system is constructed via supramolecular copolymerization of σ-platinated (hetero)acenes, by taking inspiration from the natural light harvesting of green photosynthetic bacteria. The absorption and emission transitions of the three designed σ-platinated (hetero)acenes range from visible to NIR region through structural variation. Structural similarity of these monomers faciliates supramolecular copolymerization in apolar media via the nucleation-elongation mechanism. The resulting supramolecular copolymers display long diffusion length of excitation energy (> 200 donor units) and high exciton migration rates (~1014 L mol−1 s−1), leading to an overall sequential energy transfer efficiency of 87.4% for the ternary copolymers. The superior properties originate from the dense packing of σ-platinated (hetero)acene monomers in supramolecular copolymers, mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria. Overall, directional supramolecular copolymerization of donor/acceptor chromophores with high energy transfer efficiency would provide new avenues toward artificial photosynthesis applications.

Suggested Citation

  • Yifei Han & Xiaolong Zhang & Zhiqing Ge & Zhao Gao & Rui Liao & Feng Wang, 2022. "A bioinspired sequential energy transfer system constructed via supramolecular copolymerization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31094-w
    DOI: 10.1038/s41467-022-31094-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31094-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31094-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Buckhout-White & Christopher M Spillmann & W. Russ Algar & Ani Khachatrian & Joseph S. Melinger & Ellen R. Goldman & Mario G. Ancona & Igor L. Medintz, 2014. "Assembling programmable FRET-based photonic networks using designer DNA scaffolds," Nature Communications, Nature, vol. 5(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Mu & Xiangnan Hao & Xiao Luo & Zhongke Yang & Huanjun Lu & Wei Tian, 2024. "Bioinspired polymeric supramolecular columns as efficient yet controllable artificial light-harvesting platform," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Wei Yuan & Letian Chen & Chuting Yuan & Zidan Zhang & Xiaokai Chen & Xiaodong Zhang & Jingjing Guo & Cheng Qian & Zujin Zhao & Yanli Zhao, 2023. "Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31094-w. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.