IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53928-5.html
   My bibliography  Save this article

Pathway-directed recyclable chirality inversion of coordinated supramolecular polymers

Author

Listed:
  • Kuo Fu

    (Tongji University)

  • Yanli Zhao

    (Nanyang Technological University)

  • Guofeng Liu

    (Tongji University
    Nanyang Technological University)

Abstract

It remains challenging to elucidate the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity. Herein, metal coordination driven assembly systems based on pyridyl-conjugated cholesterol (PVPCC) and metal ions (Ag+ or Al3+) are established to demonstrate pathway-directed, recyclable chirality inversion and assembly polymorphism. In the Ag(I)/PVPCC system, a competitive pathway leads Ag-Complex to form either kinetically controlled supramolecular polymer (Ag-SP I) or thermodynamically favored Ag-SP II, accompanied by reversible chiroptical inversion. Conversely, the Al(III)/PVPCC system displays a solvent-assisted consecutive pathway: the Al-Complex initially forms ethanol-containing Al-SP II, and subsequently converts into ethanol-free Al-SP I with opposite chiroptical performance upon thermal treatment. Moreover, stable chirality inversion in the solid state enables potential dynamic circularly polarized luminescence encryption when Ag(I)/PVPCC is co-assembled with thioflavin T. These findings provide the guidance for the dynamic modulation of chirality functionality in supramolecular materials for applications in information processing, data encryption, and chiral spintronics.

Suggested Citation

  • Kuo Fu & Yanli Zhao & Guofeng Liu, 2024. "Pathway-directed recyclable chirality inversion of coordinated supramolecular polymers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53928-5
    DOI: 10.1038/s41467-024-53928-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53928-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53928-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joonsik Seo & Joonyoung F. Joung & Sungnam Park & Young Ji Son & Jaegeun Noh & Jong-Man Kim, 2020. "Light-directed trapping of metastable intermediates in a self-assembly process," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Sung Chul Ha & Ky Lowenhaupt & Alexander Rich & Yang-Gyun Kim & Kyeong Kyu Kim, 2005. "Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases," Nature, Nature, vol. 437(7062), pages 1183-1186, October.
    3. Peter A. Korevaar & Subi J. George & Albert J. Markvoort & Maarten M. J. Smulders & Peter A. J. Hilbers & Albert P. H. J. Schenning & Tom F. A. De Greef & E. W. Meijer, 2012. "Pathway complexity in supramolecular polymerization," Nature, Nature, vol. 481(7382), pages 492-496, January.
    4. Liguang Xu & Xiuxiu Wang & Weiwei Wang & Maozhong Sun & Won Jin Choi & Ji-Young Kim & Changlong Hao & Si Li & Aihua Qu & Meiru Lu & Xiaoling Wu & Felippe M. Colombari & Weverson R. Gomes & Asdrubal L., 2022. "Enantiomer-dependent immunological response to chiral nanoparticles," Nature, Nature, vol. 601(7893), pages 366-373, January.
    5. Nathan J. Van Zee & Beatrice Adelizzi & Mathijs F. J. Mabesoone & Xiao Meng & Antonio Aloi & R. Helen Zha & Martin Lutz & Ivo A. W. Filot & Anja R. A. Palmans & E. W. Meijer, 2018. "Potential enthalpic energy of water in oils exploited to control supramolecular structure," Nature, Nature, vol. 558(7708), pages 100-103, June.
    6. Mitsuaki Yamauchi & Tomonori Ohba & Takashi Karatsu & Shiki Yagai, 2015. "Photoreactive helical nanoaggregates exhibiting morphology transition on thermal reconstruction," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    7. Krishnachary Salikolimi & Vakayil K. Praveen & Achalkumar Ammathnadu Sudhakar & Kuniyo Yamada & Noriko Nishizawa Horimoto & Yasuhiro Ishida, 2020. "Helical supramolecular polymers with rationally designed binding sites for chiral guest recognition," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    8. Jisung Kim & Jinhee Lee & Woo Young Kim & Hyungjun Kim & Sanghwa Lee & Hee Chul Lee & Yoon Sup Lee & Myungeun Seo & Sang Youl Kim, 2015. "Induction and control of supramolecular chirality by light in self-assembled helical nanostructures," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shixin Fa & Tan-hao Shi & Suzu Akama & Keisuke Adachi & Keisuke Wada & Seigo Tanaka & Naoki Oyama & Kenichi Kato & Shunsuke Ohtani & Yuuya Nagata & Shigehisa Akine & Tomoki Ogoshi, 2022. "Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Chunping Mao & Fuan Deng & Wanning Zhu & Leiming Xie & Yijun Wang & Guoyin Li & Xingke Huang & Jiahui Wang & Yue Song & Ping Zeng & Zhenpeng He & Jingnan Guo & Yao Suo & Yujing Liu & Zhuo Chen & Mingx, 2024. "In situ editing of tumour cell membranes induces aggregation and capture of PD-L1 membrane proteins for enhanced cancer immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Xiali Lv & Yu Tian & Fengxia Wu & Xiaoxi Luan & Fenghua Li & Zhili Shen & Guobao Xu & Kun Liu & Wenxin Niu, 2024. "Chiral plasmonic-dielectric coupling enables strong near-infrared chiroptical responses from helicoidal core-shell nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Tianran Zhang & Dengping Lyu & Wei Xu & Xuan Feng & Ran Ni & Yufeng Wang, 2023. "Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Xiaolin Lu & Xujie Wang & Shuangshuang Wang & Tao Ding, 2023. "Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jing Ai & Xueliang Zhang & Te Bai & Qing Shen & Peter Oleynikov & Yingying Duan & Osamu Terasaki & Shunai Che & Lu Han, 2022. "Synchronous quantitative analysis of chiral mesostructured inorganic crystals by 3D electron diffraction tomography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Michael D. Dore & Muhammad Ghufran Rafique & Tianxiao Peter Yang & Marlo Zorman & Casey M. Platnich & Pengfei Xu & Tuan Trinh & Felix J. Rizzuto & Gonzalo Cosa & Jianing Li & Alba Guarné & Hanadi F. S, 2024. "Heat-activated growth of metastable and length-defined DNA fibers expands traditional polymer assembly," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Semih Sevim & Alessandro Sorrenti & João Pedro Vale & Zoubir El-Hachemi & Salvador Pané & Andreas D. Flouris & Tiago Sotto Mayor & Josep Puigmartí-Luis, 2022. "Chirality transfer from a 3D macro shape to the molecular level by controlling asymmetric secondary flows," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Martina Crippa & Claudio Perego & Anna L. Marco & Giovanni M. Pavan, 2022. "Molecular communications in complex systems of dynamic supramolecular polymers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Stephen J. Klawa & Michelle Lee & Kyle D. Riker & Tengyue Jian & Qunzhao Wang & Yuan Gao & Margaret L. Daly & Shreeya Bhonge & W. Seth Childers & Tolulope O. Omosun & Anil K. Mehta & David G. Lynn & R, 2024. "Uncovering supramolecular chirality codes for the design of tunable biomaterials," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Huacheng Li & Xin Xu & Rongcheng Guan & Artur Movsesyan & Zhenni Lu & Qiliang Xu & Ziyun Jiang & Yurong Yang & Majid Khan & Jin Wen & Hongwei Wu & Santiago Moya & Gil Markovich & Huatian Hu & Zhiming , 2024. "Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Joseph F. Woods & Lucía Gallego & Pauline Pfister & Mounir Maaloum & Andreas Vargas Jentzsch & Michel Rickhaus, 2022. "Shape-assisted self-assembly," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Si Li & Xinxin Xu & Liguang Xu & Hengwei Lin & Hua Kuang & Chuanlai Xu, 2024. "Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Jiapeng Zheng & Christina Boukouvala & George R. Lewis & Yicong Ma & Yang Chen & Emilie Ringe & Lei Shao & Zhifeng Huang & Jianfang Wang, 2023. "Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53928-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.