IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54890-y.html
   My bibliography  Save this article

Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets

Author

Listed:
  • Sharon Berkowicz

    (AlbaNova University Center, Stockholm University)

  • Iason Andronis

    (AlbaNova University Center, Stockholm University)

  • Anita Girelli

    (AlbaNova University Center, Stockholm University)

  • Mariia Filianina

    (AlbaNova University Center, Stockholm University)

  • Maddalena Bin

    (AlbaNova University Center, Stockholm University)

  • Kyeongmin Nam

    (Pohang University of Science and Technology (POSTECH))

  • Myeongsik Shin

    (Pohang University of Science and Technology (POSTECH))

  • Markus Kowalewski

    (AlbaNova University Center, Stockholm University)

  • Tetsuo Katayama

    (Japan Synchrotron Radiation Research Institute
    RIKEN SPring-8 Center)

  • Nicolas Giovambattista

    (Brooklyn College of the City University of New York
    The Graduate Center of the City University of New York)

  • Kyung Hwan Kim

    (Pohang University of Science and Technology (POSTECH))

  • Fivos Perakis

    (AlbaNova University Center, Stockholm University)

Abstract

Recent experiments and theoretical studies strongly indicate that water exhibits a liquid-liquid phase transition (LLPT) in the supercooled domain. An open question is how the LLPT of water can affect the properties of aqueous solutions. Here, we study the structural and thermodynamic properties of supercooled glycerol-water microdroplets at dilute conditions (χg = 3.2% glycerol mole fraction). The combination of rapid evaporative cooling with femtosecond X-ray scattering allows us to outrun crystallization and gain access to the deeply supercooled regime down to T = 229.3 K. We find that the density fluctuations of the glycerol-water solution or, equivalently, its isothermal compressibility, κT, increases upon cooling. This is confirmed by molecular dynamics simulations, which indicate that the presence of glycerol shifts the temperature of maximum κT from T = 230 K in pure water down to T = 223 K in the solution. Our findings elucidate the interplay between the complex behavior of water, including its LLPT, and the properties of aqueous solutions at low temperatures, which can have practical consequences in cryogenic biological applications and cryopreservation techniques.

Suggested Citation

  • Sharon Berkowicz & Iason Andronis & Anita Girelli & Mariia Filianina & Maddalena Bin & Kyeongmin Nam & Myeongsik Shin & Markus Kowalewski & Tetsuo Katayama & Nicolas Giovambattista & Kyung Hwan Kim & , 2024. "Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54890-y
    DOI: 10.1038/s41467-024-54890-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54890-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54890-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anders Nilsson & Lars G. M. Pettersson, 2015. "The structural origin of anomalous properties of liquid water," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
    2. Osamu Mishima & H. Eugene Stanley, 1998. "The relationship between liquid, supercooled and glassy water," Nature, Nature, vol. 396(6709), pages 329-335, November.
    3. Thomas Koop & Beiping Luo & Athanasios Tsias & Thomas Peter, 2000. "Water activity as the determinant for homogeneous ice nucleation in aqueous solutions," Nature, Nature, vol. 406(6796), pages 611-614, August.
    4. J. A. Sellberg & C. Huang & T. A. McQueen & N. D. Loh & H. Laksmono & D. Schlesinger & R. G. Sierra & D. Nordlund & C. Y. Hampton & D. Starodub & D. P. DePonte & M. Beye & C. Chen & A. V. Martin & A. , 2014. "Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature," Nature, Nature, vol. 510(7505), pages 381-384, June.
    5. Ken-ichiro Murata & Hajime Tanaka, 2013. "General nature of liquid–liquid transition in aqueous organic solutions," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    6. Jeremy C. Palmer & Fausto Martelli & Yang Liu & Roberto Car & Athanassios Z. Panagiotopoulos & Pablo G. Debenedetti, 2014. "Metastable liquid–liquid transition in a molecular model of water," Nature, Nature, vol. 510(7505), pages 385-388, June.
    7. Katrin Amann-Winkel & Kyung Hwan Kim & Nicolas Giovambattista & Marjorie Ladd-Parada & Alexander Späh & Fivos Perakis & Harshad Pathak & Cheolhee Yang & Tobias Eklund & Thomas J. Lane & Seonju You & S, 2023. "Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Ralf Biehl, 2019. "Jscatter, a program for evaluation and analysis of experimental data," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-18, June.
    9. Susannah Holmes & Henry J. Kirkwood & Richard Bean & Klaus Giewekemeyer & Andrew V. Martin & Marjan Hadian-Jazi & Max O. Wiedorn & Dominik Oberthür & Hugh Marman & Luigi Adriano & Nasser Al-Qudami & S, 2022. "Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. P. Gallo & D. Corradini & M. Rovere, 2014. "Widom line and dynamical crossovers as routes to understand supercritical water," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    11. Pablo G. Debenedetti & Frank H. Stillinger, 2001. "Supercooled liquids and the glass transition," Nature, Nature, vol. 410(6825), pages 259-267, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Tournier & Michael I. Ojovan, 2022. "Multiple Melting Temperatures in Glass-Forming Melts," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    2. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Gautam, Arvind K. & Chandra, Avinash, 2020. "A computational study of excess properties for mW potential model of water in supercooled region," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    4. Birte Riechers & Amlan Das & Eric Dufresne & Peter M. Derlet & Robert Maaß, 2024. "Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Nicole L. Mandel & Soohyun Lee & Kimyung Kim & Keewook Paeng & Laura J. Kaufman, 2022. "Single molecule demonstration of Debye–Stokes–Einstein breakdown in polystyrene near the glass transition temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Simone Ciarella & Dmytro Khomenko & Ludovic Berthier & Felix C. Mocanu & David R. Reichman & Camille Scalliet & Francesco Zamponi, 2023. "Finding defects in glasses through machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Lemke, N & de Almeida, R.M.C, 2004. "Diffusion on fractal phase spaces and entropy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 309-315.
    8. Leo Zella & Jaeyun Moon & Takeshi Egami, 2024. "Ripples in the bottom of the potential energy landscape of metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    10. Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Lars V. Bock & Helmut Grubmüller, 2022. "Effects of cryo-EM cooling on structural ensembles," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Stanley, H.Eugene & Andrade, José S. & Havlin, Shlomo & Makse, Hernán A. & Suki, Béla, 1999. "Percolation phenomena: a broad-brush introduction with some recent applications to porous media, liquid water, and city growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 5-16.
    13. Umbertoluca Ranieri & Ferdinando Formisano & Federico A. Gorelli & Mario Santoro & Michael Marek Koza & Alessio De Francesco & Livia E. Bove, 2024. "Crossover from gas-like to liquid-like molecular diffusion in a simple supercritical fluid," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Giuseppe Cassone & Fausto Martelli, 2024. "Electrofreezing of liquid water at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Archana, G.R. & Barik, Debashis, 2024. "Multiple current reversals in driven inertial coupled Brownian particles under rough symmetric periodic potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    16. Rizzatti, Eduardo Osório & Gomes Filho, Márcio Sampaio & Malard, Mariana & Barbosa, Marco Aurélio A., 2019. "Waterlike anomalies in the Bose–Hubbard model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 323-330.
    17. Charles M. Pépin & Ramesh André & Florent Occelli & Florian Dembele & Aldo Mozzanica & Viktoria Hinger & Matteo Levantino & Paul Loubeyre, 2024. "Metastable water at several compression rates and its freezing kinetics into ice VII," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Hideaki Murase & Shunto Arai & Tatsuo Hasegawa & Kazuya Miyagawa & Kazushi Kanoda, 2023. "Spatiotemporal observation of quantum crystallization of electrons," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Florentina Maxim & Iuliana Poenaru & Elena Ecaterina Toma & Giuseppe Stefan Stoian & Florina Teodorescu & Cristian Hornoiu & Speranta Tanasescu, 2021. "Functional Materials for Waste-to-Energy Processes in Supercritical Water," Energies, MDPI, vol. 14(21), pages 1-23, November.
    20. Stanley, H.E. & Kumar, P. & Xu, L. & Yan, Z. & Mazza, M.G. & Buldyrev, S.V. & Chen, S.-H. & Mallamace, F., 2007. "The puzzling unsolved mysteries of liquid water: Some recent progress," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 729-743.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54890-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.