IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v386y2007i2p729-743.html
   My bibliography  Save this article

The puzzling unsolved mysteries of liquid water: Some recent progress

Author

Listed:
  • Stanley, H.E.
  • Kumar, P.
  • Xu, L.
  • Yan, Z.
  • Mazza, M.G.
  • Buldyrev, S.V.
  • Chen, S.-H.
  • Mallamace, F.

Abstract

Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Indeed, it defies the imagination of even the most creative science fiction writer to picture what life would be like without water. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We introduce some of these unsolved mysteries, and demonstrate recent progress in solving them. We present evidence from experiments and computer simulations supporting the hypothesis that water displays a special transition point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell). The general idea is that when the liquid is near this “tipping point,” it suddenly separates into two distinct liquid phases. This concept of a new critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a protein.

Suggested Citation

  • Stanley, H.E. & Kumar, P. & Xu, L. & Yan, Z. & Mazza, M.G. & Buldyrev, S.V. & Chen, S.-H. & Mallamace, F., 2007. "The puzzling unsolved mysteries of liquid water: Some recent progress," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 729-743.
  • Handle: RePEc:eee:phsmap:v:386:y:2007:i:2:p:729-743
    DOI: 10.1016/j.physa.2007.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107007807
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osamu Mishima & H. Eugene Stanley, 1998. "Decompression-induced melting of ice IV and the liquid–liquid transition in water," Nature, Nature, vol. 392(6672), pages 164-168, March.
    2. Starr, Francis W. & Angell, C.Austen & Stanley, H.Eugene, 2003. "Prediction of entropy and dynamic properties of water below the homogeneous nucleation temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 51-66.
    3. Uri Raviv & Pierre Laurat & Jacob Klein, 2001. "Fluidity of water confined to subnanometre films," Nature, Nature, vol. 413(6851), pages 51-54, September.
    4. Osamu Mishima & H. Eugene Stanley, 1998. "The relationship between liquid, supercooled and glassy water," Nature, Nature, vol. 396(6709), pages 329-335, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stepišnik, Janez & Mattea, Carlos & Stapf, Siegfried & Mohorič, Aleš, 2020. "Molecular velocity auto-correlations in glycerol/water mixtures studied by NMR MGSE method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Kwang-Hua, Chu R., 2019. "Neutron scattering analysis of water’s glass transition and micropore collapse in amorphous solid water : Revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 18-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley, H.Eugene & Andrade, José S. & Havlin, Shlomo & Makse, Hernán A. & Suki, Béla, 1999. "Percolation phenomena: a broad-brush introduction with some recent applications to porous media, liquid water, and city growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 5-16.
    2. Katrin Amann-Winkel & Kyung Hwan Kim & Nicolas Giovambattista & Marjorie Ladd-Parada & Alexander Späh & Fivos Perakis & Harshad Pathak & Cheolhee Yang & Tobias Eklund & Thomas J. Lane & Seonju You & S, 2023. "Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Wiggins, Philippa M, 2002. "Water in complex environments such as living systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 485-491.
    4. Stanley, H.Eugene & Buldyrev, Sergey V. & Giovambattista, Nicolas, 2004. "Static heterogeneities in liquid water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 40-47.
    5. Stanley, H.E. & Buldyrev, S.V. & Franzese, G. & Havlin, S. & Mallamace, F. & Kumar, P. & Plerou, V. & Preis, T., 2010. "Correlated randomness and switching phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(15), pages 2880-2893.
    6. Gautam, Arvind K. & Chandra, Avinash, 2020. "A computational study of excess properties for mW potential model of water in supercooled region," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    7. Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Kwang-Hua, Chu R., 2019. "Neutron scattering analysis of water’s glass transition and micropore collapse in amorphous solid water : Revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 18-21.
    9. Charles M. Pépin & Ramesh André & Florent Occelli & Florian Dembele & Aldo Mozzanica & Viktoria Hinger & Matteo Levantino & Paul Loubeyre, 2024. "Metastable water at several compression rates and its freezing kinetics into ice VII," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Roehner, Bertrand M., 2005. "A bridge between liquids and socio-economic systems: the key role of interaction strengths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 659-682.
    11. Kiselev, S.B. & Ely, J.F., 2001. "Curvature effect on the physical boundary of metastable states in liquids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 357-370.
    12. Sharon Berkowicz & Iason Andronis & Anita Girelli & Mariia Filianina & Maddalena Bin & Kyeongmin Nam & Myeongsik Shin & Markus Kowalewski & Tetsuo Katayama & Nicolas Giovambattista & Kyung Hwan Kim & , 2024. "Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Robert F. Tournier & Michael I. Ojovan, 2022. "Multiple Melting Temperatures in Glass-Forming Melts," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    14. Qin, Xiangjie & Wu, Jinsui & Xia, Yuxuan & Wang, Han & Cai, Jianchao, 2024. "Multicomponent image-based modeling of water flow in heterogeneous wet shale nanopores," Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:386:y:2007:i:2:p:729-743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.