IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55367-8.html
   My bibliography  Save this article

Accessing ultrastable glass via a bulk transformation

Author

Listed:
  • Hengtong Bu

    (Tsinghua University)

  • Hengwei Luan

    (Tsinghua University
    City University of Hong Kong
    Futian District)

  • Jingyi Kang

    (Tsinghua University)

  • Jili Jia

    (Tsinghua University)

  • Wenhui Guo

    (Tsinghua University)

  • Yunshuai Su

    (Tsinghua University)

  • Huaping Ding

    (Huazhong University of Science and Technology)

  • Hsiang-Shun Chang

    (Tsinghua University)

  • Ranbin Wang

    (Tsinghua University)

  • You Wu

    (Tsinghua University)

  • Lingxiang Shi

    (Tsinghua University)

  • Pan Gong

    (Huazhong University of Science and Technology)

  • Qiaoshi Zeng

    (Center for High Pressure Science and Technology Advanced Research
    Institute for Shanghai Advanced Research in Physical Sciences (SHARPS))

  • Yang Shao

    (Tsinghua University)

  • Kefu Yao

    (Tsinghua University)

Abstract

As a medium to understand the nature of glass transition, ultrastable glasses have garnered increasing attention for their significance in fundamental science and technological applications. Most studies have produced ultrastable glasses through a surface-controlled process using physical vapor deposition. Here, we demonstrate an approach to accessing ultrastable glasses via the glass-to-glass transition, a bulk transformation that is inherently free from size constraints and anisotropy. The resulting ultrastable glass exhibits a significantly enhanced density (improved by 2.3%), along with high thermodynamic, kinetic, and mechanical stability. Furthermore, we propose that this method of accessing ultrastable glasses is general for metallic glasses, based on the examination of the competitive relationship between the glass-to-glass transition and crystallization. This strategy is expected to facilitate the proliferation of the ultrastable glass family, helping to resolve the instability issues of glass materials and devices and deepen our understanding of glasses and the glass transition.

Suggested Citation

  • Hengtong Bu & Hengwei Luan & Jingyi Kang & Jili Jia & Wenhui Guo & Yunshuai Su & Huaping Ding & Hsiang-Shun Chang & Ranbin Wang & You Wu & Lingxiang Shi & Pan Gong & Qiaoshi Zeng & Yang Shao & Kefu Ya, 2025. "Accessing ultrastable glass via a bulk transformation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55367-8
    DOI: 10.1038/s41467-024-55367-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55367-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55367-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jing Zhao & Sindee L. Simon & Gregory B. McKenna, 2013. "Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    3. S. Lan & Y. Ren & X. Y. Wei & B. Wang & E. P. Gilbert & T. Shibayama & S. Watanabe & M. Ohnuma & X. -L. Wang, 2017. "Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    4. P. Luo & C. R. Cao & F. Zhu & Y. M. Lv & Y. H. Liu & P. Wen & H. Y. Bai & G. Vaughan & M. Michiel & B. Ruta & W. H. Wang, 2018. "Ultrastable metallic glasses formed on cold substrates," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    5. Pablo G. Debenedetti & Frank H. Stillinger, 2001. "Supercooled liquids and the glass transition," Nature, Nature, vol. 410(6825), pages 259-267, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yihuan Cao & Ming Yang & Qing Du & Fu-Kuo Chiang & Yingjie Zhang & Shi-Wei Chen & Yubin Ke & Hongbo Lou & Fei Zhang & Yuan Wu & Hui Wang & Suihe Jiang & Xiaobin Zhang & Qiaoshi Zeng & Xiongjun Liu & Z, 2024. "Continuous polyamorphic transition in high-entropy metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Robert F. Tournier & Michael I. Ojovan, 2022. "Multiple Melting Temperatures in Glass-Forming Melts," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    4. Birte Riechers & Amlan Das & Eric Dufresne & Peter M. Derlet & Robert Maaß, 2024. "Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Nicole L. Mandel & Soohyun Lee & Kimyung Kim & Keewook Paeng & Laura J. Kaufman, 2022. "Single molecule demonstration of Debye–Stokes–Einstein breakdown in polystyrene near the glass transition temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Simone Ciarella & Dmytro Khomenko & Ludovic Berthier & Felix C. Mocanu & David R. Reichman & Camille Scalliet & Francesco Zamponi, 2023. "Finding defects in glasses through machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Lemke, N & de Almeida, R.M.C, 2004. "Diffusion on fractal phase spaces and entropy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 309-315.
    8. Leo Zella & Jaeyun Moon & Takeshi Egami, 2024. "Ripples in the bottom of the potential energy landscape of metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Lars V. Bock & Helmut Grubmüller, 2022. "Effects of cryo-EM cooling on structural ensembles," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Giuseppe Cassone & Fausto Martelli, 2024. "Electrofreezing of liquid water at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Archana, G.R. & Barik, Debashis, 2024. "Multiple current reversals in driven inertial coupled Brownian particles under rough symmetric periodic potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    12. Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Hideaki Murase & Shunto Arai & Tatsuo Hasegawa & Kazuya Miyagawa & Kazushi Kanoda, 2023. "Spatiotemporal observation of quantum crystallization of electrons," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Roger Farmer & Jean-Philippe Bouchaud, 2020. "Self-Fulfilling Prophecies, Quasi Non-Ergodicity & Wealth Inequality," NBER Working Papers 28261, National Bureau of Economic Research, Inc.
    15. Toledo-Marín, J. Quetzalcóatl & Castillo, Isaac Pérez & Naumis, Gerardo G., 2016. "Minimal cooling speed for glass transition in a simple solvable energy landscape model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 227-236.
    16. Peng Luo & Yanqin Zhai & Peter Falus & Victoria García Sakai & Monika Hartl & Maiko Kofu & Kenji Nakajima & Antonio Faraone & Y Z, 2022. "Q-dependent collective relaxation dynamics of glass-forming liquid Ca0.4K0.6(NO3)1.4 investigated by wide-angle neutron spin-echo," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Sheykhali, Somaye & Darooneh, Amir Hossein & Jafari, Gholam Reza, 2020. "Partial balance in social networks with stubborn links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    18. Sebastian A. Kube & Sungwoo Sohn & Rodrigo Ojeda-Mota & Theo Evers & William Polsky & Naijia Liu & Kevin Ryan & Sean Rinehart & Yong Sun & Jan Schroers, 2022. "Compositional dependence of the fragility in metallic glass forming liquids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Thomas J. Hardin & Michael Chandross & Rahul Meena & Spencer Fajardo & Dimitris Giovanis & Ioannis Kevrekidis & Michael L. Falk & Michael D. Shields, 2024. "Revealing the hidden structure of disordered materials by parameterizing their local structural manifold," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Sharon Berkowicz & Iason Andronis & Anita Girelli & Mariia Filianina & Maddalena Bin & Kyeongmin Nam & Myeongsik Shin & Markus Kowalewski & Tetsuo Katayama & Nicolas Giovambattista & Kyung Hwan Kim & , 2024. "Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55367-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.