IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v266y1999i1p5-16.html
   My bibliography  Save this article

Percolation phenomena: a broad-brush introduction with some recent applications to porous media, liquid water, and city growth

Author

Listed:
  • Stanley, H.Eugene
  • Andrade, José S.
  • Havlin, Shlomo
  • Makse, Hernán A.
  • Suki, Béla

Abstract

This brief overview is designed to introduce some of the advances that have occurred in our understanding of percolation phenomena. We organize our presentation around three simple questions: (i) What are percolation phenomena? (ii) Why do we care? (iii) What do we actually do? To answer the third question, we will briefly review some recent applications of percolation that have been the subject of research in the Boston University group.

Suggested Citation

  • Stanley, H.Eugene & Andrade, José S. & Havlin, Shlomo & Makse, Hernán A. & Suki, Béla, 1999. "Percolation phenomena: a broad-brush introduction with some recent applications to porous media, liquid water, and city growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 5-16.
  • Handle: RePEc:eee:phsmap:v:266:y:1999:i:1:p:5-16
    DOI: 10.1016/S0378-4371(99)00029-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199000291
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00029-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osamu Mishima & H. Eugene Stanley, 1998. "Decompression-induced melting of ice IV and the liquid–liquid transition in water," Nature, Nature, vol. 392(6672), pages 164-168, March.
    2. Dhar, Deepak, 1986. "Some exact results for polymer models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 140(1), pages 210-211.
    3. Naeem Jan & Dietrich Stauffer, 1998. "Random Site Percolation in Three Dimensions," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 341-347.
    4. Grassberger, Peter, 1999. "Conductivity exponent and backbone dimension in 2-d percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 262(3), pages 251-263.
    5. Osamu Mishima & H. Eugene Stanley, 1998. "The relationship between liquid, supercooled and glassy water," Nature, Nature, vol. 396(6709), pages 329-335, November.
    6. Shane Macleod & Naeem Jan, 1998. "Large Lattice Simulation of Random Site Percolation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 289-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Di & Wang, Jun, 2012. "Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4827-4838.
    2. Vašata, Daniel & Exner, Pavel & Šeba, Petr, 2011. "Built-up structure criticality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3922-3931.
    3. Stanley, H.Eugene & Andrade, José S, 2001. "Physics of the cigarette filter: fluid flow through structures with randomly-placed obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 17-30.
    4. Stalgorova, Ekaterina & Babadagli, Tayfun, 2014. "Scaling of production data obtained from Random Walk Particle Tracking simulations in highly fractured porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 181-192.
    5. Haibo Tang & Yangsheng Zhao & Zhiqin Kang & Zhaoxing Lv & Dong Yang & Kun Wang, 2022. "Investigation on the Fracture-Pore Evolution and Percolation Characteristics of Oil Shale under Different Temperatures," Energies, MDPI, vol. 15(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley, H.E. & Kumar, P. & Xu, L. & Yan, Z. & Mazza, M.G. & Buldyrev, S.V. & Chen, S.-H. & Mallamace, F., 2007. "The puzzling unsolved mysteries of liquid water: Some recent progress," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 729-743.
    2. Katrin Amann-Winkel & Kyung Hwan Kim & Nicolas Giovambattista & Marjorie Ladd-Parada & Alexander Späh & Fivos Perakis & Harshad Pathak & Cheolhee Yang & Tobias Eklund & Thomas J. Lane & Seonju You & S, 2023. "Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Wiggins, Philippa M, 2002. "Water in complex environments such as living systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 485-491.
    4. Stanley, H.Eugene & Buldyrev, Sergey V. & Giovambattista, Nicolas, 2004. "Static heterogeneities in liquid water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 40-47.
    5. Stanley, H.E. & Buldyrev, S.V. & Franzese, G. & Havlin, S. & Mallamace, F. & Kumar, P. & Plerou, V. & Preis, T., 2010. "Correlated randomness and switching phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(15), pages 2880-2893.
    6. Gross, Bnaya & Bonamassa, Ivan & Havlin, Shlomo, 2021. "Interdependent transport via percolation backbones in spatial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    7. Gautam, Arvind K. & Chandra, Avinash, 2020. "A computational study of excess properties for mW potential model of water in supercooled region," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    8. Zhang, Zhongjin & Hou, Pengcheng & Fang, Sheng & Hu, Hao & Deng, Youjin, 2021. "Critical exponents and universal excess cluster number of percolation in four and five dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Charles M. Pépin & Ramesh André & Florent Occelli & Florian Dembele & Aldo Mozzanica & Viktoria Hinger & Matteo Levantino & Paul Loubeyre, 2024. "Metastable water at several compression rates and its freezing kinetics into ice VII," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Roehner, Bertrand M., 2005. "A bridge between liquids and socio-economic systems: the key role of interaction strengths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 659-682.
    12. Kiselev, S.B. & Ely, J.F., 2001. "Curvature effect on the physical boundary of metastable states in liquids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 357-370.
    13. Stanley, H.Eugene & Andrade, José S, 2001. "Physics of the cigarette filter: fluid flow through structures with randomly-placed obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(1), pages 17-30.
    14. Sharon Berkowicz & Iason Andronis & Anita Girelli & Mariia Filianina & Maddalena Bin & Kyeongmin Nam & Myeongsik Shin & Markus Kowalewski & Tetsuo Katayama & Nicolas Giovambattista & Kyung Hwan Kim & , 2024. "Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Robert F. Tournier & Michael I. Ojovan, 2022. "Multiple Melting Temperatures in Glass-Forming Melts," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    16. Balankin, Alexander S., 2024. "A survey of fractal features of Bernoulli percolation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:266:y:1999:i:1:p:5-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.