IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55616-w.html
   My bibliography  Save this article

Synergistic enhancement of electrochemical alcohol oxidation by combining NiV-layered double hydroxide with an aminoxyl radical

Author

Listed:
  • Suiqin Li

    (Zhejiang University of Technology)

  • Shibin Wang

    (Zhejiang University of Technology)

  • Yuhang Wang

    (Zhejiang University of Technology)

  • Jiahui He

    (Zhejiang University of Technology)

  • Kai Li

    (Zhejiang University of Technology)

  • James B. Gerken

    (University of Wisconsin-Madison)

  • Shannon S. Stahl

    (University of Wisconsin-Madison)

  • Xing Zhong

    (Zhejiang University of Technology)

  • Jianguo Wang

    (Zhejiang University of Technology)

Abstract

Electrochemical alcohol oxidation (EAO) represents an effective method for the production of high-value carbonyl products. However, its industrial viability is hindered by suboptimal efficiency stemming from low reaction rates. Here, we present a synergistic electrocatalysis approach that integrates an active electrode and aminoxyl radical to enhance the performance of EAO. The optimal aminoxyl radical (4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl) and Ni0.67V0.33-layered double hydroxide (LDH) are screen as cooperative electrocatalysts by integrating theoretical predictions and experiments. The Ni0.67V0.33-LDH facilitates the adsorption and activation of N-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)acetamide (ACTH) via interactions with ketonic oxygen, thereby improving selectivity and yield at high current densities. The electrolysis process is scaled up to produce 200 g of the steroid carbonyl product 8b (19-Aldoandrostenedione), achieving a yield of 91% and a productivity of 243 g h-1. These results represent a promising method for accelerating electron transfer to enhance alcohol oxidation, highlighting its potential for practical electrosynthesis applications.

Suggested Citation

  • Suiqin Li & Shibin Wang & Yuhang Wang & Jiahui He & Kai Li & James B. Gerken & Shannon S. Stahl & Xing Zhong & Jianguo Wang, 2025. "Synergistic enhancement of electrochemical alcohol oxidation by combining NiV-layered double hydroxide with an aminoxyl radical," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55616-w
    DOI: 10.1038/s41467-024-55616-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55616-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55616-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiang Liu & Yu-Quan Zhu & Jing Li & Ye Wang & Qiujin Shi & An-Zhen Li & Kaiyue Ji & Xi Wang & Xikang Zhao & Jinyu Zheng & Haohong Duan, 2024. "Electrosynthesis of adipic acid with high faradaic efficiency within a wide potential window," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ganceng Yang & Yanqing Jiao & Haijing Yan & Ying Xie & Chungui Tian & Aiping Wu & Yu Wang & Honggang Fu, 2022. "Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Artavazd Badalyan & Shannon S. Stahl, 2016. "Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators," Nature, Nature, vol. 535(7612), pages 406-410, July.
    5. Jian Jiang & Fanfei Sun & Si Zhou & Wei Hu & Hao Zhang & Jinchao Dong & Zheng Jiang & Jijun Zhao & Jianfeng Li & Wensheng Yan & Mei Wang, 2018. "Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    6. Dewen Wang & Qun Li & Ce Han & Qingqing Lu & Zhicai Xing & Xiurong Yang, 2019. "Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    7. Ke Fan & Hong Chen & Yongfei Ji & Hui Huang & Per Martin Claesson & Quentin Daniel & Bertrand Philippe & Håkan Rensmo & Fusheng Li & Yi Luo & Licheng Sun, 2016. "Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuzhen Chen & Qiuhong Li & Yuxing Lin & Jiao Liu & Jing Pan & Jingguo Hu & Xiaoyong Xu, 2024. "Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ke Liu & Mengna Lei & Xin Li & Xuemei Zhang & Ying Zhang & Weigang Fan & Man-Bo Li & Sheng Zhang, 2024. "Paired electrocatalysis unlocks cross-dehydrogenative coupling of C(sp3)-H bonds using a pentacoordinated cobalt-salen catalyst," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Dan Wu & Longfei Hu & Xiaokang Liu & Tong Liu & Xiangyu Zhu & Qiquan Luo & Huijuan Zhang & Linlin Cao & Jinlong Yang & Zheng Jiang & Tao Yao, 2025. "Time-resolved spectroscopy uncovers deprotonation-induced reconstruction in oxygen-evolution NiFe-based (oxy)hydroxides," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Wenhui Shi & Zezhou Li & Zhihao Gong & Zihui Liang & Hanwen Liu & Ye-Chuang Han & Huiting Niu & Bo Song & Xiaodong Chi & Jihan Zhou & Hua Wang & Bao Yu Xia & Yonggang Yao & Zhong-Qun Tian, 2023. "Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yuke Bai & Yu Wu & Xichen Zhou & Yifan Ye & Kaiqi Nie & Jiaou Wang & Miao Xie & Zhixue Zhang & Zhaojun Liu & Tao Cheng & Chuanbo Gao, 2022. "Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Jingjing Cao & Huaxing Liang & Jie Yang & Zhiyang Zhu & Jin Deng & Xiaodong Li & Menachem Elimelech & Xinglin Lu, 2024. "Depolymerization mechanisms and closed-loop assessment in polyester waste recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Min Liu & Tian Feng & Yanwei Wang & Guangsheng Kou & Qiuyan Wang & Qian Wang & Youai Qiu, 2023. "Metal-free electrochemical dihydroxylation of unactivated alkenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Ming Yang & Yimin Jiang & Chung-Li Dong & Leitao Xu & Yutong Huang & Shifan Leng & Yandong Wu & Yongxiang Luo & Wei Chen & Ta Thi Thuy Nga & Shuangyin Wang & Yuqin Zou, 2024. "A self-reactivated PdCu catalyst for aldehyde electro-oxidation with anodic hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Lei Fan & Xiaowan Bai & Chuan Xia & Xiao Zhang & Xunhua Zhao & Yang Xia & Zhen-Yu Wu & Yingying Lu & Yuanyue Liu & Haotian Wang, 2022. "CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Siliu Lyu & Chenxi Guo & Jianing Wang & Zhongjian Li & Bin Yang & Lecheng Lei & Liping Wang & Jianping Xiao & Tao Zhang & Yang Hou, 2022. "Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55616-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.