IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30670-4.html
   My bibliography  Save this article

Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity

Author

Listed:
  • Shanlin Li

    (The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Beijing University of Technology)

  • Ruguang Ma

    (The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    Suzhou University of Science and Technology)

  • Jingcong Hu

    (Beijing University of Technology)

  • Zichuang Li

    (The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lijia Liu

    (Western University)

  • Xunlu Wang

    (The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yue Lu

    (Beijing University of Technology)

  • George E. Sterbinsky

    (Advanced Photon Source, Argonne National Laboratory)

  • Shuhu Liu

    (Institute of High Energy Physics, Chinese Academy of Sciences)

  • Lei Zheng

    (Institute of High Energy Physics, Chinese Academy of Sciences)

  • Jie Liu

    (The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences)

  • Danmin Liu

    (Beijing University of Technology)

  • Jiacheng Wang

    (The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    North China University of Science and Technology)

Abstract

To achieve zero-carbon economy, advanced anode catalysts are desirable for hydrogen production and biomass upgrading powered by renewable energy. Ni-based non-precious electrocatalysts are considered as potential candidates because of intrinsic redox attributes, but in-depth understanding and rational design of Ni site coordination still remain challenging. Here, we perform anodic electrochemical oxidation of Ni-metalloids (NiPx, NiSx, and NiSex) to in-situ construct different oxyanion-coordinated amorphous nickel oxyhydroxides (NiOOH-TOx), among which NiOOH-POx shows optimal local coordination environment and boosts electrocatalytic activity of Ni sites towards selective oxidation of methanol to formate. Experiments and theoretical results demonstrate that NiOOH-POx possesses improved adsorption of OH* and methanol, and favors the formation of CH3O* intermediates. The coordinated phosphate oxyanions effectively tailor the d band center of Ni sites and increases Ni-O covalency, promoting the catalytic activity. This study provides additional insights into modulation of active-center coordination environment via oxyanions for organic molecules transformation.

Suggested Citation

  • Shanlin Li & Ruguang Ma & Jingcong Hu & Zichuang Li & Lijia Liu & Xunlu Wang & Yue Lu & George E. Sterbinsky & Shuhu Liu & Lei Zheng & Jie Liu & Danmin Liu & Jiacheng Wang, 2022. "Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30670-4
    DOI: 10.1038/s41467-022-30670-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30670-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30670-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jumi Bak & Hyung Bae & Sung-Yoon Chung, 2019. "Atomic-scale perturbation of oxygen octahedra via surface ion exchange in perovskite nickelates boosts water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Ning Zhang & Xiaobin Feng & Dewei Rao & Xi Deng & Lejuan Cai & Bocheng Qiu & Ran Long & Yujie Xiong & Yang Lu & Yang Chai, 2020. "Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Xiaopeng Wang & Shibo Xi & Wee Siang Vincent Lee & Pengru Huang & Peng Cui & Lei Zhao & Weichang Hao & Xinsheng Zhao & Zhenbo Wang & Haijun Wu & Hao Wang & Caozheng Diao & Armando Borgna & Yonghua Du , 2020. "Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xintong Gao & Xiaowan Bai & Pengtang Wang & Yan Jiao & Kenneth Davey & Yao Zheng & Shi-Zhang Qiao, 2023. "Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Qianbao Wu & Junwu Liang & Mengjun Xiao & Chang Long & Lei Li & Zhenhua Zeng & Andraž Mavrič & Xia Zheng & Jing Zhu & Hai-Wei Liang & Hongfei Liu & Matjaz Valant & Wei Wang & Zhengxing Lv & Jiong Li &, 2023. "Non-covalent ligand-oxide interaction promotes oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Achim Füngerlings & Marcus Wohlgemuth & Denis Antipin & Emma Minne & Ellen Marijn Kiens & Javier Villalobos & Marcel Risch & Felix Gunkel & Rossitza Pentcheva & Christoph Baeumer, 2023. "Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Botao Zhu & Bo Dong & Feng Wang & Qifeng Yang & Yunpeng He & Cunjin Zhang & Peng Jin & Lai Feng, 2023. "Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Chao Yang & Rebecca Pons & Wilfried Sigle & Hongguang Wang & Eva Benckiser & Gennady Logvenov & Bernhard Keimer & Peter A. Aken, 2024. "Direct observation of strong surface reconstruction in partially reduced nickelate films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Jingjing Cao & Huaxing Liang & Jie Yang & Zhiyang Zhu & Jin Deng & Xiaodong Li & Menachem Elimelech & Xinglin Lu, 2024. "Depolymerization mechanisms and closed-loop assessment in polyester waste recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Zuyun He & Jinwoo Hwang & Zhiheng Gong & Mengzhen Zhou & Nian Zhang & Xiongwu Kang & Jeong Woo Han & Yan Chen, 2022. "Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30670-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.