IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v593y2021i7857d10.1038_s41586-021-03454-x.html
   My bibliography  Save this article

Correlative operando microscopy of oxygen evolution electrocatalysts

Author

Listed:
  • J. Tyler Mefford

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Andrew R. Akbashev

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Minkyung Kang

    (University of Warwick)

  • Cameron L. Bentley

    (University of Warwick)

  • William E. Gent

    (Stanford University)

  • Haitao D. Deng

    (Stanford University)

  • Daan Hein Alsem

    (Hummingbird Scientific)

  • Young-Sang Yu

    (Lawrence Berkeley National Laboratory)

  • Norman J. Salmon

    (Hummingbird Scientific)

  • David A. Shapiro

    (Lawrence Berkeley National Laboratory)

  • Patrick R. Unwin

    (University of Warwick)

  • William C. Chueh

    (Stanford University
    SLAC National Accelerator Laboratory)

Abstract

Transition metal (oxy)hydroxides are promising electrocatalysts for the oxygen evolution reaction1–3. The properties of these materials evolve dynamically and heterogeneously4 with applied voltage through ion insertion redox reactions, converting materials that are inactive under open circuit conditions into active electrocatalysts during operation5. The catalytic state is thus inherently far from equilibrium, which complicates its direct observation. Here, using a suite of correlative operando scanning probe and X-ray microscopy techniques, we establish a link between the oxygen evolution activity and the local operational chemical, physical and electronic nanoscale structure of single-crystalline β-Co(OH)2 platelet particles. At pre-catalytic voltages, the particles swell to form an α-CoO2H1.5·0.5H2O-like structure—produced through hydroxide intercalation—in which the oxidation state of cobalt is +2.5. Upon increasing the voltage to drive oxygen evolution, interlayer water and protons de-intercalate to form contracted β-CoOOH particles that contain Co3+ species. Although these transformations manifest heterogeneously through the bulk of the particles, the electrochemical current is primarily restricted to their edge facets. The observed Tafel behaviour is correlated with the local concentration of Co3+ at these reactive edge sites, demonstrating the link between bulk ion-insertion and surface catalytic activity.

Suggested Citation

  • J. Tyler Mefford & Andrew R. Akbashev & Minkyung Kang & Cameron L. Bentley & William E. Gent & Haitao D. Deng & Daan Hein Alsem & Young-Sang Yu & Norman J. Salmon & David A. Shapiro & Patrick R. Unwin, 2021. "Correlative operando microscopy of oxygen evolution electrocatalysts," Nature, Nature, vol. 593(7857), pages 67-73, May.
  • Handle: RePEc:nat:nature:v:593:y:2021:i:7857:d:10.1038_s41586-021-03454-x
    DOI: 10.1038/s41586-021-03454-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03454-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03454-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yang Hu & Yao Zheng & Jing Jin & Yantao Wang & Yong Peng & Jie Yin & Wei Shen & Yichao Hou & Liu Zhu & Li An & Min Lu & Pinxian Xi & Chun-Hua Yan, 2023. "Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    5. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Xiaona Zhao & Xiao-Li Zhou & Si-Yu Yang & Yuan Min & Jie-Jie Chen & Xian-Wei Liu, 2022. "Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Pin Wang & Mengfan Xue & Dongjian Jiang & Yanliang Yang & Junzhe Zhang & Hongzheng Dong & Gengzhi Sun & Yingfang Yao & Wenjun Luo & Zhigang Zou, 2022. "Photovoltage memory effect in a portable Faradaic junction solar rechargeable device," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Raj Pandya & Florian Dorchies & Davide Romanin & Jean-François Lemineur & Frédéric Kanoufi & Sylvain Gigan & Alex W. Chin & Hilton B. Aguiar & Alexis Grimaud, 2024. "Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Ben Niu & Wenxuan Jiang & Bo Jiang & Mengqi Lv & Sa Wang & Wei Wang, 2022. "Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Hua Zhou & Yue Ren & Bingxin Yao & Zhenhua Li & Ming Xu & Lina Ma & Xianggui Kong & Lirong Zheng & Mingfei Shao & Haohong Duan, 2023. "Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Yue Chen & Wenkai Wu & Sergio Gonzalez-Munoz & Leonardo Forcieri & Charlie Wells & Samuel P. Jarvis & Fangling Wu & Robert Young & Avishek Dey & Mark Isaacs & Mangayarkarasi Nagarathinam & Robert G. P, 2023. "Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Cai, Jiajia & Tang, Xiangxuan & Wang, Jianmin & Zhang, Tingting & Xie, Qian & Mao, Keke & Li, Song & Qin, Gaowu, 2024. "Self-driving photothermal anode electrocatalyst towards the robust OER for water electrolysis," Renewable Energy, Elsevier, vol. 232(C).
    15. Xinxuan Duan & Qihao Sha & Pengsong Li & Tianshui Li & Guotao Yang & Wei Liu & Ende Yu & Daojin Zhou & Jinjie Fang & Wenxing Chen & Yizhen Chen & Lirong Zheng & Jiangwen Liao & Zeyu Wang & Yaping Li &, 2024. "Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:593:y:2021:i:7857:d:10.1038_s41586-021-03454-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.