IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32443-5.html
   My bibliography  Save this article

Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation

Author

Listed:
  • Yanbin Qi

    (East China University of Science and Technology
    East China University of Science and Technology)

  • Yue Zhang

    (Anhui University)

  • Li Yang

    (Anhui University)

  • Yuhan Zhao

    (East China University of Science and Technology)

  • Yihua Zhu

    (East China University of Science and Technology)

  • Hongliang Jiang

    (East China University of Science and Technology)

  • Chunzhong Li

    (East China University of Science and Technology
    East China University of Science and Technology)

Abstract

Designing efficient catalysts and understanding the underlying mechanisms for anodic nucleophile electrooxidation are central to the advancement of electrochemically-driven technologies. Here, a heterostructure of nickel boride/nickel catalyst is developed to enable methanol electrooxidation into formate with a Faradaic efficiency of nearly 100%. Operando electrochemical impedance spectroscopy and in situ Raman spectroscopy are applied to understand the influence of methanol concentration in the methanol oxidation reaction. High concentrations of methanol inhibit the phase transition of the electrocatalyst to high-valent electro-oxidation products, and electrophilic oxygen species (O* or OH*) formed on the electrocatalyst are considered to be the catalytically active species. Additional mechanistic investigation with density functional theory calculations reveals that the potential-determining step, the formation of *CH2O, occurs most favorably on the nickel boride/nickel heterostructure rather than on nickel boride and nickel. These results are highly instructive for the study of other nucleophile-based approaches to electrooxidation reactions and organic electrosynthesis.

Suggested Citation

  • Yanbin Qi & Yue Zhang & Li Yang & Yuhan Zhao & Yihua Zhu & Hongliang Jiang & Chunzhong Li, 2022. "Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32443-5
    DOI: 10.1038/s41467-022-32443-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32443-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32443-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Botao Zhu & Bo Dong & Feng Wang & Qifeng Yang & Yunpeng He & Cunjin Zhang & Peng Jin & Lai Feng, 2023. "Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xintong Gao & Xiaowan Bai & Pengtang Wang & Yan Jiao & Kenneth Davey & Yao Zheng & Shi-Zhang Qiao, 2023. "Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32443-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.