IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37441-9.html
   My bibliography  Save this article

Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides

Author

Listed:
  • Botao Zhu

    (Soochow University)

  • Bo Dong

    (Soochow University)

  • Feng Wang

    (Soochow University)

  • Qifeng Yang

    (Soochow University)

  • Yunpeng He

    (Soochow University)

  • Cunjin Zhang

    (Hebei University of Technology)

  • Peng Jin

    (Hebei University of Technology)

  • Lai Feng

    (Soochow University)

Abstract

For nickel-based catalysts, in-situ formed nickel oxyhydroxide has been generally believed as the origin for anodic biomass electro-oxidations. However, rationally understanding the catalytic mechanism still remains challenging. In this work, we demonstrate that NiMn hydroxide as the anodic catalyst can enable methanol-to-formate electro-oxidation reaction (MOR) with a low cell-potential of 1.33/1.41 V at 10/100 mA cm−2, a Faradaic efficiency of nearly 100% and good durability in alkaline media, remarkably outperforming NiFe hydroxide. Based on a combined experimental and computational study, we propose a cyclic pathway that consists of reversible redox transitions of NiII-(OH)2/NiIII-OOH and a concomitant MOR. More importantly, it is proved that the NiIII-OOH provides combined active sites including NiIII and nearby electrophilic oxygen species, which work in a cooperative manner to promote either spontaneous or non-spontaneous MOR process. Such a bifunctional mechanism can well account for not only the highly selective formate formation but also the transient presence of NiIII-OOH. The different catalytic activities of NiMn and NiFe hydroxides can be attributed to their different oxidation behaviors. Thus, our work provides a clear and rational understanding of the overall MOR mechanism on nickel-based hydroxides, which is beneficial for advanced catalyst design.

Suggested Citation

  • Botao Zhu & Bo Dong & Feng Wang & Qifeng Yang & Yunpeng He & Cunjin Zhang & Peng Jin & Lai Feng, 2023. "Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37441-9
    DOI: 10.1038/s41467-023-37441-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37441-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37441-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Li & Xinfa Wei & Lisong Chen & Jianlin Shi & Mingyuan He, 2019. "Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yanbin Qi & Yue Zhang & Li Yang & Yuhan Zhao & Yihua Zhu & Hongliang Jiang & Chunzhong Li, 2022. "Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    5. Fabio Dionigi & Zhenhua Zeng & Ilya Sinev & Thomas Merzdorf & Siddharth Deshpande & Miguel Bernal Lopez & Sebastian Kunze & Ioannis Zegkinoglou & Hannes Sarodnik & Dingxin Fan & Arno Bergmann & Jakub , 2020. "In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Zuyun He & Jinwoo Hwang & Zhiheng Gong & Mengzhen Zhou & Nian Zhang & Xiongwu Kang & Jeong Woo Han & Yan Chen, 2022. "Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xiaopeng Wang & Shibo Xi & Wee Siang Vincent Lee & Pengru Huang & Peng Cui & Lei Zhao & Weichang Hao & Xinsheng Zhao & Zhenbo Wang & Haijun Wu & Hao Wang & Caozheng Diao & Armando Borgna & Yonghua Du , 2020. "Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hua Zhou & Yue Ren & Bingxin Yao & Zhenhua Li & Ming Xu & Lina Ma & Xianggui Kong & Lirong Zheng & Mingfei Shao & Haohong Duan, 2023. "Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jie Wei & Yangfan Shao & Jingbo Xu & Fang Yin & Zejian Li & Haitao Qian & Yinping Wei & Liang Chang & Yu Han & Jia Li & Lin Gan, 2024. "Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    6. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    7. Lei, Yuanting & Zhang, Lili & Zhou, Danni & Xiong, Chengli & Zhao, Yafei & Chen, Wenxing & Xiang, Xu & Shang, Huishan & Zhang, Bing, 2022. "Construction of interconnected NiO/CoFe alloy nanosheets for overall water splitting," Renewable Energy, Elsevier, vol. 194(C), pages 459-468.
    8. Sukanta Mondal & Pratim Kumar Chattaraj, 2023. "Aromatic Clusters and Hydrogen Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    9. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    10. Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
    11. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    13. Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
    14. Lijuan Yan & Yange Zhang & Jun Liu, 2019. "The Dissociation and Diffusion Features of H2 Molecule on Two Ti Atoms Doped Al(111) Surface," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 16(3), pages 1-4, March.
    15. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    17. Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
    18. Xu Luo & Hongyu Zhao & Xin Tan & Sheng Lin & Kesong Yu & Xueqin Mu & Zhenhua Tao & Pengxia Ji & Shichun Mu, 2024. "Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.
    20. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37441-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.