IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54271-5.html
   My bibliography  Save this article

Reprogramming of flagellin receptor responses with surrogate ligands

Author

Listed:
  • Du-Hwa Lee

    (Dr. Bohr-Gasse 3
    University of Natural Resources and Life Sciences (BOKU))

  • Ho-Seok Lee

    (Dr. Bohr-Gasse 3
    Institute for Basic Science
    Kyung Hee University)

  • Min-Soo Choi

    (Dr. Bohr-Gasse 3)

  • Katarzyna Parys

    (Dr. Bohr-Gasse 3
    University of Munich (LMU))

  • Kaori Honda

    (Wako)

  • Yasumitsu Kondoh

    (Wako)

  • Jung-Min Lee

    (Dr. Bohr-Gasse 3)

  • Natalie Edelbacher

    (Dr. Bohr-Gasse 3)

  • Geon Heo

    (Dr. Bohr-Gasse 3)

  • Balaji Enugutti

    (Dr. Bohr-Gasse 3)

  • Hiroyuki Osada

    (Wako
    University of Shizuoka)

  • Ken Shirasu

    (RIKEN Center for Sustainable Resource Science
    The University of Tokyo)

  • Youssef Belkhadir

    (Dr. Bohr-Gasse 3
    Residence Taghazout Ocean #13)

Abstract

Receptor kinase (RK) families process information from small molecules, short peptides, or glycan ligands to regulate core cellular pathways in plants. To date, whether individual plant RKs are capable of processing signals from distinct types of ligands remains largely unexplored. Addressing this requires the discovery of structurally unrelated ligands that engage the same receptor. Here, we focus on FLAGELLIN-SENSING 2 (FLS2), an RK that senses a peptide of bacterial flagellin to activate antibacterial immunity in Arabidopsis. We interrogate >20,000 potential interactions between small molecules and the sensory domain of FLS2 using a large-scale reverse chemical screen. We discover two small molecules that interact with FLS2 in atypical ways. The surrogate ligands weakly activate the receptor to drive a functional antibacterial response channeled via unusual gene expression programs. Thus, chemical probes acting as biased ligands can be exploited to discover unexpected levels of output flexibility in RKs signal transduction.

Suggested Citation

  • Du-Hwa Lee & Ho-Seok Lee & Min-Soo Choi & Katarzyna Parys & Kaori Honda & Yasumitsu Kondoh & Jung-Min Lee & Natalie Edelbacher & Geon Heo & Balaji Enugutti & Hiroyuki Osada & Ken Shirasu & Youssef Bel, 2024. "Reprogramming of flagellin receptor responses with surrogate ligands," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54271-5
    DOI: 10.1038/s41467-024-54271-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54271-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54271-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elwira Smakowska-Luzan & G. Adam Mott & Katarzyna Parys & Martin Stegmann & Timothy C Howton & Mehdi Layeghifard & Jana Neuhold & Anita Lehner & Jixiang Kong & Karin Grünwald & Natascha Weinberger & S, 2018. "An extracellular network of Arabidopsis leucine-rich repeat receptor kinases," Nature, Nature, vol. 553(7688), pages 342-346, January.
    2. Elwira Smakowska-Luzan & G. Adam Mott & Katarzyna Parys & Martin Stegmann & Timothy C Howton & Mehdi Layeghifard & Jana Neuhold & Anita Lehner & Jixiang Kong & Karin Grünwald & Natascha Weinberger & S, 2018. "Publisher Correction: An extracellular network of Arabidopsis leucine-rich repeat receptor kinases," Nature, Nature, vol. 561(7722), pages 8-8, September.
    3. Feihua Wu & Yuan Chi & Zhonghao Jiang & Yuanyuan Xu & Ling Xie & Feifei Huang & Di Wan & Jun Ni & Fang Yuan & Xiaomei Wu & Yanyan Zhang & Li Wang & Rui Ye & Benjamin Byeon & Wenhua Wang & Shu Zhang & , 2020. "Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis," Nature, Nature, vol. 578(7796), pages 577-581, February.
    4. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    5. Anuphon Laohavisit & Takanori Wakatake & Nobuaki Ishihama & Hugh Mulvey & Kaori Takizawa & Takamasa Suzuki & Ken Shirasu, 2020. "Quinone perception in plants via leucine-rich-repeat receptor-like kinases," Nature, Nature, vol. 587(7832), pages 92-97, November.
    6. Cyril Zipfel & Silke Robatzek & Lionel Navarro & Edward J. Oakeley & Jonathan D. G. Jones & Georg Felix & Thomas Boller, 2004. "Bacterial disease resistance in Arabidopsis through flagellin perception," Nature, Nature, vol. 428(6984), pages 764-767, April.
    7. Andra-Octavia Roman & Pedro Jimenez-Sandoval & Sebastian Augustin & Caroline Broyart & Ludwig A. Hothorn & Julia Santiago, 2022. "HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Sang-Youl Park & Francis C. Peterson & Assaf Mosquna & Jin Yao & Brian F. Volkman & Sean R. Cutler, 2015. "Agrochemical control of plant water use using engineered abscisic acid receptors," Nature, Nature, vol. 520(7548), pages 545-548, April.
    9. Delphine Chinchilla & Cyril Zipfel & Silke Robatzek & Birgit Kemmerling & Thorsten Nürnberger & Jonathan D. G. Jones & Georg Felix & Thomas Boller, 2007. "A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence," Nature, Nature, vol. 448(7152), pages 497-500, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Pei & Peiyun Ji & Jierui Si & Hanqing Zhao & Sicong Zhang & Ruofei Xu & Huijun Qiao & Weiwei Duan & Danyu Shen & Zhiyuan Yin & Daolong Dou, 2023. "A Phytophthora receptor-like kinase regulates oospore development and can activate pattern-triggered plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Andra-Octavia Roman & Pedro Jimenez-Sandoval & Sebastian Augustin & Caroline Broyart & Ludwig A. Hothorn & Julia Santiago, 2022. "HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    5. Sayaka Matsui & Saki Noda & Keiko Kuwata & Mika Nomoto & Yasuomi Tada & Hidefumi Shinohara & Yoshikatsu Matsubayashi, 2024. "Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    9. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    10. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    11. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    12. Jingbo Qie & Yang Liu & Yunzhi Wang & Fan Zhang & Zhaoyu Qin & Sha Tian & Mingwei Liu & Kai Li & Wenhao Shi & Lei Song & Mingjun Sun & Yexin Tong & Ping Hu & Tao Gong & Xiaqiong Wang & Yi Huang & Bolo, 2022. "Integrated proteomic and transcriptomic landscape of macrophages in mouse tissues," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    13. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    14. Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Katharina Clemm von Hohenberg & Sandra Müller & Sibylle Schleich & Matthias Meister & Jonathan Bohlen & Thomas G. Hofmann & Aurelio A. Teleman, 2022. "Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Mervin Chun-Yi Ang & Jolly Madathiparambil Saju & Thomas K. Porter & Sayyid Mohaideen & Sreelatha Sarangapani & Duc Thinh Khong & Song Wang & Jianqiao Cui & Suh In Loh & Gajendra Pratap Singh & Nam-Ha, 2024. "Decoding early stress signaling waves in living plants using nanosensor multiplexing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    18. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Ryosuke Ishimura & Afnan H. El-Gowily & Daisuke Noshiro & Satoko Komatsu-Hirota & Yasuko Ono & Mayumi Shindo & Tomohisa Hatta & Manabu Abe & Takefumi Uemura & Hyeon-Cheol Lee-Okada & Tarek M. Mohamed , 2022. "The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Tang Cam Phung Pham & Steffen Henning Raun & Essi Havula & Carlos Henriquez-Olguín & Diana Rubalcava-Gracia & Emma Frank & Andreas Mæchel Fritzen & Paulo R. Jannig & Nicoline Resen Andersen & Rikke Kr, 2024. "The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54271-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.