IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40855-0.html
   My bibliography  Save this article

Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm

Author

Listed:
  • Elena Grahn

    (Molecular Sensory Systems)

  • Svenja V. Kaufmann

    (Bioanalytical Mass Spectrometry)

  • Malika Askarova

    (Molecular Sensory Systems)

  • Momchil Ninov

    (Bioanalytical Mass Spectrometry
    Institute of Clinical Chemistry, Bioanalytics)

  • Luisa M. Welp

    (Bioanalytical Mass Spectrometry
    Institute of Clinical Chemistry, Bioanalytics)

  • Thomas K. Berger

    (Molecular Sensory Systems
    Philipps-University Marburg)

  • Henning Urlaub

    (Bioanalytical Mass Spectrometry
    Institute of Clinical Chemistry, Bioanalytics
    Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen)

  • U.Benjamin Kaupp

    (Molecular Sensory Systems
    University Bonn)

Abstract

The reaction of CO2 with H2O to form bicarbonate (HCO3−) and H+ controls sperm motility and fertilization via HCO3−-stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3− in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3− transport are not detected, and may be present at copy numbers

Suggested Citation

  • Elena Grahn & Svenja V. Kaufmann & Malika Askarova & Momchil Ninov & Luisa M. Welp & Thomas K. Berger & Henning Urlaub & U.Benjamin Kaupp, 2023. "Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40855-0
    DOI: 10.1038/s41467-023-40855-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40855-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40855-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruiming Zhao & Hui Dai & Rodolfo J. Arias & Gerardo A. Blas & Gerardo Orta & Martín A. Pavarotti & Rong Shen & Eduardo Perozo & Luis S. Mayorga & Alberto Darszon & Steve A. N. Goldstein, 2021. "Direct activation of the proton channel by albumin leads to human sperm capacitation and sustained release of inflammatory mediators by neutrophils," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. I. Scott Ramsey & Magdalene M. Moran & Jayhong A. Chong & David E. Clapham, 2006. "A voltage-gated proton-selective channel lacking the pore domain," Nature, Nature, vol. 440(7088), pages 1213-1216, April.
    3. Polina V. Lishko & Inna L. Botchkina & Yuriy Kirichok, 2011. "Progesterone activates the principal Ca2+ channel of human sperm," Nature, Nature, vol. 471(7338), pages 387-391, March.
    4. F. Windler & W. Bönigk & H. G. Körschen & E. Grahn & T. Strünker & R. Seifert & U. B. Kaupp, 2018. "The solute carrier SLC9C1 is a Na+/H+-exchanger gated by an S4-type voltage-sensor and cyclic-nucleotide binding," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    5. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    6. Yanhe Zhao & Huafeng Wang & Caroline Wiesehoefer & Naman B. Shah & Evan Reetz & Jae Yeon Hwang & Xiaofang Huang & Tse-en Wang & Polina V. Lishko & Karen M. Davies & Gunther Wennemuth & Daniela Nicastr, 2022. "3D structure and in situ arrangements of CatSper channel in the sperm flagellum," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Shiyi Lin & Meng Ke & Yuqi Zhang & Zhen Yan & Jianping Wu, 2021. "Structure of a mammalian sperm cation channel complex," Nature, Nature, vol. 595(7869), pages 746-750, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    6. Lifeng Tian & Hao Zhang & Shilong Yang & Anna Luo & Peter Muiruri Kamau & Jingmei Hu & Lei Luo & Ren Lai, 2023. "Vertebrate OTOP1 is also an alkali-activated channel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    8. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    9. Chang Zhao & Parker D. Webster & Alexis Angeli & Francesco Tombola, 2023. "Mechanically-primed voltage-gated proton channels from angiosperm plants," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Jingbo Qie & Yang Liu & Yunzhi Wang & Fan Zhang & Zhaoyu Qin & Sha Tian & Mingwei Liu & Kai Li & Wenhao Shi & Lei Song & Mingjun Sun & Yexin Tong & Ping Hu & Tao Gong & Xiaqiong Wang & Yi Huang & Bolo, 2022. "Integrated proteomic and transcriptomic landscape of macrophages in mouse tissues," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    12. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    13. Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Katharina Clemm von Hohenberg & Sandra Müller & Sibylle Schleich & Matthias Meister & Jonathan Bohlen & Thomas G. Hofmann & Aurelio A. Teleman, 2022. "Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Yanhe Zhao & Huafeng Wang & Caroline Wiesehoefer & Naman B. Shah & Evan Reetz & Jae Yeon Hwang & Xiaofang Huang & Tse-en Wang & Polina V. Lishko & Karen M. Davies & Gunther Wennemuth & Daniela Nicastr, 2022. "3D structure and in situ arrangements of CatSper channel in the sperm flagellum," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Ryosuke Ishimura & Afnan H. El-Gowily & Daisuke Noshiro & Satoko Komatsu-Hirota & Yasuko Ono & Mayumi Shindo & Tomohisa Hatta & Manabu Abe & Takefumi Uemura & Hyeon-Cheol Lee-Okada & Tarek M. Mohamed , 2022. "The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Sajib Chakraborty & Hossain Uddin Shekhar, 2017. "Applications of Mass-Spectrometry Based Quantitative Proteomics to Understand Complex Cellular Functions and Cell Fate Decisions," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(1), pages 169-171, June.
    19. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Shixuan Liu & Camille Ezran & Michael F. Z. Wang & Zhengda Li & Kyle Awayan & Jonathan Z. Long & Iwijn De Vlaminck & Sheng Wang & Jacques Epelbaum & Christin S. Kuo & Jérémy Terrien & Mark A. Krasnow , 2024. "An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome," Nature Communications, Nature, vol. 15(1), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40855-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.