IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35501-0.html
   My bibliography  Save this article

The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3

Author

Listed:
  • Ryosuke Ishimura

    (Juntendo University Graduate School of Medicine, Bunkyo-ku)

  • Afnan H. El-Gowily

    (Juntendo University Graduate School of Medicine, Bunkyo-ku
    Tanta University)

  • Daisuke Noshiro

    (Hokkaido University)

  • Satoko Komatsu-Hirota

    (Juntendo University Graduate School of Medicine, Bunkyo-ku)

  • Yasuko Ono

    (Tokyo Metropolitan Institute of Medical Science, Setagaya-ku)

  • Mayumi Shindo

    (Tokyo Metropolitan Institute of Medical Science, Setagaya-ku)

  • Tomohisa Hatta

    (Biological Information Research Center (JBIRC), Kohtoh-ku)

  • Manabu Abe

    (Niigata University, Chuo-ku)

  • Takefumi Uemura

    (Fukushima Medical University School of Medicine, Hikarigaoka)

  • Hyeon-Cheol Lee-Okada

    (Juntendo University Graduate School of Medicine, Bunkyo-ku)

  • Tarek M. Mohamed

    (Tanta University)

  • Takehiko Yokomizo

    (Juntendo University Graduate School of Medicine, Bunkyo-ku)

  • Takashi Ueno

    (Juntendo University Graduate School of Medicine, Bunkyo-ku)

  • Kenji Sakimura

    (Niigata University, Chuo-ku)

  • Tohru Natsume

    (Biological Information Research Center (JBIRC), Kohtoh-ku)

  • Hiroyuki Sorimachi

    (Tokyo Metropolitan Institute of Medical Science, Setagaya-ku)

  • Toshifumi Inada

    (The University of Tokyo)

  • Satoshi Waguri

    (Fukushima Medical University School of Medicine, Hikarigaoka)

  • Nobuo N. Noda

    (Hokkaido University)

  • Masaaki Komatsu

    (Juntendo University Graduate School of Medicine, Bunkyo-ku)

Abstract

Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.

Suggested Citation

  • Ryosuke Ishimura & Afnan H. El-Gowily & Daisuke Noshiro & Satoko Komatsu-Hirota & Yasuko Ono & Mayumi Shindo & Tomohisa Hatta & Manabu Abe & Takefumi Uemura & Hyeon-Cheol Lee-Okada & Tarek M. Mohamed , 2022. "The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35501-0
    DOI: 10.1038/s41467-022-35501-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35501-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35501-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huabin Zhu & Brinda Bhatt & Sathish Sivaprakasam & Yafei Cai & Siyang Liu & Sai Karthik Kodeboyina & Nikhil Patel & Natasha M. Savage & Ashok Sharma & Randal J. Kaufman & Honglin Li & Nagendra Singh, 2019. "Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Fumika Koyano & Kei Okatsu & Hidetaka Kosako & Yasushi Tamura & Etsu Go & Mayumi Kimura & Yoko Kimura & Hikaru Tsuchiya & Hidehito Yoshihara & Takatsugu Hirokawa & Toshiya Endo & Edward A. Fon & Jean-, 2014. "Ubiquitin is phosphorylated by PINK1 to activate parkin," Nature, Nature, vol. 510(7503), pages 162-166, June.
    3. Bo Qin & Jia Yu & Somaira Nowsheen & Minghui Wang & Xinyi Tu & Tongzheng Liu & Honglin Li & Liewei Wang & Zhenkun Lou, 2019. "UFL1 promotes histone H4 ufmylation and ATM activation," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Kanako Tatsumi & Harumi Yamamoto-Mukai & Ritsuko Shimizu & Satoshi Waguri & Yu-Shin Sou & Ayako Sakamoto & Choji Taya & Hiroshi Shitara & Takahiko Hara & Chin Ha Chung & Keiji Tanaka & Masayuki Yamamo, 2011. "The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    5. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    6. Aliaksandr Khaminets & Theresa Heinrich & Muriel Mari & Paolo Grumati & Antje K. Huebner & Masato Akutsu & Lutz Liebmann & Alexandra Stolz & Sandor Nietzsche & Nicole Koch & Mario Mauthe & Istvan Kato, 2015. "Regulation of endoplasmic reticulum turnover by selective autophagy," Nature, Nature, vol. 522(7556), pages 354-358, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangcheng Alivia Wu & Chenchen Shen & Xiaoqiong Wei & Xiawei Zhang & Siwen Wang & Xinxin Chen & Mauricio Torres & You Lu & Liangguang Leo Lin & Huilun Helen Wang & Allen H. Hunter & Deyu Fang & Shen, 2023. "The mechanisms to dispose of misfolded proteins in the endoplasmic reticulum of adipocytes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    4. Katrin Stuber & Tobias Schneider & Jill Werner & Michael Kovermann & Andreas Marx & Martin Scheffner, 2021. "Structural and functional consequences of NEDD8 phosphorylation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    6. Yu-Jie Chen & Jeffrey Knupp & Anoop Arunagiri & Leena Haataja & Peter Arvan & Billy Tsai, 2021. "PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    7. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    9. Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Katharina Clemm von Hohenberg & Sandra Müller & Sibylle Schleich & Matthias Meister & Jonathan Bohlen & Thomas G. Hofmann & Aurelio A. Teleman, 2022. "Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Qiang Zhu & Matthew E. Combs & Juan Liu & Xue Bai & Wenbo B. Wang & Laura E. Herring & Jiandong Liu & Jason W. Locasale & Dawn E. Bowles & Ryan T. Gross & Michelle Mendiola Pla & Christopher P. Mack &, 2023. "GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    12. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Marika K. Kucińska & Juliette Fedry & Carmela Galli & Diego Morone & Andrea Raimondi & Tatiana Soldà & Friedrich Förster & Maurizio Molinari, 2023. "TMX4-driven LINC complex disassembly and asymmetric autophagy of the nuclear envelope upon acute ER stress," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Rayene Berkane & Hung Ho-Xuan & Marius Glogger & Pablo Sanz-Martinez & Lorène Brunello & Tristan Glaesner & Santosh Kumar Kuncha & Katharina Holzhüter & Sara Cano-Franco & Viviana Buonomo & Paloma Cab, 2023. "The function of ER-phagy receptors is regulated through phosphorylation-dependent ubiquitination pathways," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Rune B Jakobsen & Esben Østrup & Xiaolan Zhang & Tarjei S Mikkelsen & Jan E Brinchmann, 2014. "Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    17. Beatrice T. Laudenbach & Karsten Krey & Quirin Emslander & Line Lykke Andersen & Alexander Reim & Pietro Scaturro & Sarah Mundigl & Christopher Dächert & Katrin Manske & Markus Moser & Janos Ludwig & , 2021. "NUDT2 initiates viral RNA degradation by removal of 5′-phosphates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. McNutt Patrick & Gut Ian & Hubbard Kyle & Beske Phil, 2015. "A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 227-241, June.
    19. Elena Grahn & Svenja V. Kaufmann & Malika Askarova & Momchil Ninov & Luisa M. Welp & Thomas K. Berger & Henning Urlaub & U.Benjamin Kaupp, 2023. "Control of intracellular pH and bicarbonate by CO2 diffusion into human sperm," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Kaushik Bhattacharya & Samarpan Maiti & Szabolcs Zahoran & Lorenz Weidenauer & Dina Hany & Diana Wider & Lilia Bernasconi & Manfredo Quadroni & Martine Collart & Didier Picard, 2022. "Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35501-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.