IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38171-8.html
   My bibliography  Save this article

Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation

Author

Listed:
  • Jonathan J. Swietlik

    (Max Planck Institute of Biochemistry)

  • Stefanie Bärthel

    (German Cancer Research Center and German Cancer Consortium
    University Hospital Rechts der Isar, School of Medicine, Technical University of Munich
    Technical University of Munich)

  • Chiara Falcomatà

    (German Cancer Research Center and German Cancer Consortium
    University Hospital Rechts der Isar, School of Medicine, Technical University of Munich
    Technical University of Munich)

  • Diana Fink

    (University of Bonn)

  • Ankit Sinha

    (Max Planck Institute of Biochemistry)

  • Jingyuan Cheng

    (Max Planck Institute of Biochemistry)

  • Stefan Ebner

    (University of Bonn)

  • Peter Landgraf

    (Otto-von-Guericke-University Magdeburg)

  • Daniela C. Dieterich

    (Otto-von-Guericke-University Magdeburg
    Center for Behavioral Brain Sciences)

  • Henrik Daub

    (NEOsphere Biotechnologies GmbH)

  • Dieter Saur

    (German Cancer Research Center and German Cancer Consortium
    University Hospital Rechts der Isar, School of Medicine, Technical University of Munich
    Technical University of Munich)

  • Felix Meissner

    (Max Planck Institute of Biochemistry
    University of Bonn)

Abstract

Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.

Suggested Citation

  • Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38171-8
    DOI: 10.1038/s41467-023-38171-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38171-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38171-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kwang-eun Kim & Isaac Park & Jeesoo Kim & Myeong-Gyun Kang & Won Gun Choi & Hyemi Shin & Jong-Seo Kim & Hyun-Woo Rhee & Jae Myoung Suh, 2021. "Dynamic tracking and identification of tissue-specific secretory proteins in the circulation of live mice," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Philipp Mertins & D. R. Mani & Kelly V. Ruggles & Michael A. Gillette & Karl R. Clauser & Pei Wang & Xianlong Wang & Jana W. Qiao & Song Cao & Francesca Petralia & Emily Kawaler & Filip Mundt & Karste, 2016. "Proteogenomics connects somatic mutations to signalling in breast cancer," Nature, Nature, vol. 534(7605), pages 55-62, June.
    3. Sruti Rayaprolu & Sara Bitarafan & Juliet V. Santiago & Ranjita Betarbet & Sydney Sunna & Lihong Cheng & Hailian Xiao & Ruth S. Nelson & Prateek Kumar & Pritha Bagchi & Duc M. Duong & Annie M. Goettem, 2022. "Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Yan Liu & Michael J. Conboy & Melod Mehdipour & Yutong Liu & Thanhtra P. Tran & Aaron Blotnick & Prasanna Rajan & Thalie Cavalcante Santos & Irina M. Conboy, 2017. "Application of bio-orthogonal proteome labeling to cell transplantation and heterochronic parabiosis," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    5. Björn Schwanhäusser & Dorothea Busse & Na Li & Gunnar Dittmar & Johannes Schuchhardt & Jana Wolf & Wei Chen & Matthias Selbach, 2011. "Global quantification of mammalian gene expression control," Nature, Nature, vol. 473(7347), pages 337-342, May.
    6. Sebastian Mueller & Thomas Engleitner & Roman Maresch & Magdalena Zukowska & Sebastian Lange & Thorsten Kaltenbacher & Björn Konukiewitz & Rupert Öllinger & Maximilian Zwiebel & Alex Strong & Hsi-Yu Y, 2018. "Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes," Nature, Nature, vol. 554(7690), pages 62-68, February.
    7. Juliane Winkler & Abisola Abisoye-Ogunniyan & Kevin J. Metcalf & Zena Werb, 2020. "Concepts of extracellular matrix remodelling in tumour progression and metastasis," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
    8. Ashok Kumar Jayavelu & Tina M. Schnöder & Florian Perner & Carolin Herzog & Arno Meiler & Gurumoorthy Krishnamoorthy & Nicolas Huber & Juliane Mohr & Bärbel Edelmann-Stephan & Rebecca Austin & Sabine , 2020. "Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms," Nature, Nature, vol. 588(7836), pages 157-163, December.
    9. Maria C. Tanzer & Isabell Bludau & Che A. Stafford & Veit Hornung & Matthias Mann, 2021. "Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Ozge Saatci & Aysegul Kaymak & Umar Raza & Pelin G. Ersan & Ozge Akbulut & Carolyn E. Banister & Vitali Sikirzhytski & Unal Metin Tokat & Gamze Aykut & Suhail A. Ansari & Hayriye Tatli Dogan & Mehmet , 2020. "Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    11. Gulfem D. Guler & Yuhong Ning & Chin-Jen Ku & Tierney Phillips & Erin McCarthy & Christopher K. Ellison & Anna Bergamaschi & Francois Collin & Paul Lloyd & Aaron Scott & Michael Antoine & Wendy Wang &, 2020. "Detection of early stage pancreatic cancer using 5-hydroxymethylcytosine signatures in circulating cell free DNA," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    12. Peter Bailey & David K. Chang & Katia Nones & Amber L. Johns & Ann-Marie Patch & Marie-Claude Gingras & David K. Miller & Angelika N. Christ & Tim J. C. Bruxner & Michael C. Quinn & Craig Nourse & L. , 2016. "Genomic analyses identify molecular subtypes of pancreatic cancer," Nature, Nature, vol. 531(7592), pages 47-52, March.
    13. Ines Erdmann & Kathrin Marter & Oliver Kobler & Sven Niehues & Julia Abele & Anke Müller & Julia Bussmann & Erik Storkebaum & Tamar Ziv & Ulrich Thomas & Daniela C. Dieterich, 2015. "Cell-selective labelling of proteomes in Drosophila melanogaster," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingling Li & Dongxian Jiang & Hui Liu & Chunmei Guo & Rui Zhao & Qiao Zhang & Chen Xu & Zhaoyu Qin & Jinwen Feng & Yang Liu & Haixing Wang & Weijie Chen & Xue Zhang & Bin Li & Lin Bai & Sha Tian & Su, 2023. "Comprehensive proteogenomic characterization of early duodenal cancer reveals the carcinogenesis tracks of different subtypes," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    2. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    4. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Bárbara Andrade Barbosa & Saskia D. Asten & Ji Won Oh & Arantza Farina-Sarasqueta & Joanne Verheij & Frederike Dijk & Hanneke W. M. Laarhoven & Bauke Ylstra & Juan J. Garcia Vallejo & Mark A. Wiel & Y, 2021. "Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Gábor Csárdi & Alexander Franks & David S Choi & Edoardo M Airoldi & D Allan Drummond, 2015. "Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast," PLOS Genetics, Public Library of Science, vol. 11(5), pages 1-32, May.
    8. Yuchen Bai & Carolin Gotz & Ginevra Chincarini & Zixuan Zhao & Clare Slaney & Jarryd Boath & Luc Furic & Christopher Angel & Stephen M. Jane & Wayne A. Phillips & Steven A. Stacker & Camile S. Farah &, 2023. "YBX1 integration of oncogenic PI3K/mTOR signalling regulates the fitness of malignant epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Katrin Stuber & Tobias Schneider & Jill Werner & Michael Kovermann & Andreas Marx & Martin Scheffner, 2021. "Structural and functional consequences of NEDD8 phosphorylation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    11. Xiaojian Lu & Yanwei Luo & Xichen Nie & Bailing Zhang & Xiaoyan Wang & Ran Li & Guangmin Liu & Qianyin Zhou & Zhizhong Liu & Liqing Fan & James M. Hotaling & Zhe Zhang & Hao Bo & Jingtao Guo, 2023. "Single-cell multi-omics analysis of human testicular germ cell tumor reveals its molecular features and microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Chengxin Dai & Anja Füllgrabe & Julianus Pfeuffer & Elizaveta M. Solovyeva & Jingwen Deng & Pablo Moreno & Selvakumar Kamatchinathan & Deepti Jaiswal Kundu & Nancy George & Silvie Fexova & Björn Grüni, 2021. "A proteomics sample metadata representation for multiomics integration and big data analysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Sebastien Martinez & Shifei Wu & Michael Geuenich & Ahmad Malik & Ramona Weber & Tristan Woo & Amy Zhang & Gun Ho Jang & Dzana Dervovic & Khalid N. Al-Zahrani & Ricky Tsai & Nassima Fodil & Philippe G, 2024. "In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Kaslik, Eva & Rădulescu, Ileana Rodica, 2022. "Stability and bifurcations in fractional-order gene regulatory networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    15. Peter Bailey & Rachel A. Ridgway & Patrizia Cammareri & Mairi Treanor-Taylor & Ulla-Maja Bailey & Christina Schoenherr & Max Bone & Daniel Schreyer & Karin Purdie & Jason Thomson & William Rickaby & R, 2023. "Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Suran Kim & Sungjin Min & Yi Sun Choi & Sung-Hyun Jo & Jae Hun Jung & Kyusun Han & Jin Kim & Soohwan An & Yong Woo Ji & Yun-Gon Kim & Seung-Woo Cho, 2022. "Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    17. Jingbo Qie & Yang Liu & Yunzhi Wang & Fan Zhang & Zhaoyu Qin & Sha Tian & Mingwei Liu & Kai Li & Wenhao Shi & Lei Song & Mingjun Sun & Yexin Tong & Ping Hu & Tao Gong & Xiaqiong Wang & Yi Huang & Bolo, 2022. "Integrated proteomic and transcriptomic landscape of macrophages in mouse tissues," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    18. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    19. Thomas C. J. Tan & Van Kelly & Xiaoyan Zou & David Wright & Tony Ly & Rose Zamoyska, 2022. "Translation factor eIF5a is essential for IFNγ production and cell cycle regulation in primary CD8+ T lymphocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Katharina Clemm von Hohenberg & Sandra Müller & Sibylle Schleich & Matthias Meister & Jonathan Bohlen & Thomas G. Hofmann & Aurelio A. Teleman, 2022. "Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38171-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.