IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54197-y.html
   My bibliography  Save this article

Feedback driven autonomous cycles of assembly and disassembly from minimal building blocks

Author

Listed:
  • Antara Reja

    (Indian Institute of Science Education and Research (IISER) Kolkata)

  • Sangam Jha

    (Indian Institute of Science Education and Research (IISER) Kolkata)

  • Ashley Sreejan

    (CSIR-National Chemical Laboratory
    Academy of Scientific and Innovative Research (AcSIR))

  • Sumit Pal

    (Indian Institute of Science Education and Research (IISER) Kolkata)

  • Subhajit Bal

    (Indian Institute of Science Education and Research (IISER) Kolkata)

  • Chetan Gadgil

    (CSIR-National Chemical Laboratory
    Academy of Scientific and Innovative Research (AcSIR)
    CSIR-Institute of Genomics and Integrative Biology)

  • Dibyendu Das

    (Indian Institute of Science Education and Research (IISER) Kolkata)

Abstract

The construction of complex systems by simple chemicals that can display emergent network dynamics might contribute to our understanding of complex behavior from simple organic reactions. Here we design single amino acid/dipeptide-based systems that exhibit multiple periodic changes of (dis)assembly under non-equilibrium conditions in closed system, importantly in the absence of evolved biocatalysts. The two-component based building block exploits pH driven non-covalent assembly and time-delayed accelerated catalysis from self-assembled state to install orthogonal feedback loops with a single batch of reactants. Mathematical modelling of the reaction network establishes that the oscillations are transient for this network structure and helps to predict the relative contribution of the feedback loop to the ability of the system to exhibit such transient oscillation. Such autonomous systems with purely synthetic molecules are the starting point that can enable the design of active materials with emergent properties.

Suggested Citation

  • Antara Reja & Sangam Jha & Ashley Sreejan & Sumit Pal & Subhajit Bal & Chetan Gadgil & Dibyendu Das, 2024. "Feedback driven autonomous cycles of assembly and disassembly from minimal building blocks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54197-y
    DOI: 10.1038/s41467-024-54197-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54197-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54197-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ximin He & Michael Aizenberg & Olga Kuksenok & Lauren D. Zarzar & Ankita Shastri & Anna C. Balazs & Joanna Aizenberg, 2012. "Synthetic homeostatic materials with chemo-mechano-chemical self-regulation," Nature, Nature, vol. 487(7406), pages 214-218, July.
    2. Xiuxiu Li & Polina Fomitskaya & Viktoryia A. Smaliak & Barbara S. Smith & Ekaterina V. Skorb & Sergey N. Semenov, 2024. "Selenium catalysis enables negative feedback organic oscillators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Benjamin Klemm & Reece W. Lewis & Irene Piergentili & Rienk Eelkema, 2022. "Temporally programmed polymer – solvent interactions using a chemical reaction network," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Ignacio Colomer & Sarah M. Morrow & Stephen P. Fletcher, 2018. "A transient self-assembling self-replicator," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    5. Matthew Freeman, 2000. "Feedback control of intercellular signalling in development," Nature, Nature, vol. 408(6810), pages 313-319, November.
    6. Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. R. Dean Astumian, 2019. "Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    8. Ananya Mishra & Divya B. Korlepara & Mohit Kumar & Ankit Jain & Narendra Jonnalagadda & Karteek K. Bejagam & Sundaram Balasubramanian & Subi J. George, 2018. "Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    9. Matthijs Harmsel & Oliver R. Maguire & Sofiya A. Runikhina & Albert S. Y. Wong & Wilhelm T. S. Huck & Syuzanna R. Harutyunyan, 2023. "A catalytically active oscillator made from small organic molecules," Nature, Nature, vol. 621(7977), pages 87-93, September.
    10. Sergey N. Semenov & Lewis J. Kraft & Alar Ainla & Mengxia Zhao & Mostafa Baghbanzadeh & Victoria E. Campbell & Kyungtae Kang & Jerome M. Fox & George M. Whitesides, 2016. "Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions," Nature, Nature, vol. 537(7622), pages 656-660, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuxiu Li & Polina Fomitskaya & Viktoryia A. Smaliak & Barbara S. Smith & Ekaterina V. Skorb & Sergey N. Semenov, 2024. "Selenium catalysis enables negative feedback organic oscillators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Dmitrii V. Kriukov & Jurriaan Huskens & Albert S. Y. Wong, 2024. "Exploring the programmability of autocatalytic chemical reaction networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Daniela Sorrentino & Simona Ranallo & Francesco Ricci & Elisa Franco, 2024. "Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    6. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Thomas B. H. Schroeder & Joanna Aizenberg, 2022. "Patterned crystal growth and heat wave generation in hydrogels," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Sriram, K., 2006. "Effects of positive electrical feedback in the oscillating Belousov–Zhabotinsky reaction: Experiments and simulations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1055-1066.
    9. Hui Zhang & Yueling Chen & Yong Chen, 2012. "Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    10. Benjamin Klemm & Reece W. Lewis & Irene Piergentili & Rienk Eelkema, 2022. "Temporally programmed polymer – solvent interactions using a chemical reaction network," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Martina Crippa & Claudio Perego & Anna L. Marco & Giovanni M. Pavan, 2022. "Molecular communications in complex systems of dynamic supramolecular polymers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Natsumi Nishiie & Ryo Kawatani & Sae Tezuka & Miu Mizuma & Mikihiro Hayashi & Yasuhiro Kohsaka, 2024. "Vitrimer-like elastomers with rapid stress-relaxation by high-speed carboxy exchange through conjugate substitution reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Xianhua Lang & Yingjie Huang & Lirong He & Yixi Wang & Udayabhaskararao Thumu & Zonglin Chu & Wilhelm T. S. Huck & Hui Zhao, 2023. "Mechanosensitive non-equilibrium supramolecular polymerization in closed chemical systems," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Jens Grauer & Falko Schmidt & Jesús Pineda & Benjamin Midtvedt & Hartmut Löwen & Giovanni Volpe & Benno Liebchen, 2021. "Active droploids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Andrea Braeutigam & Ahmet Nihat Simsek & Gerhard Gompper & Benedikt Sabass, 2022. "Generic self-stabilization mechanism for biomolecular adhesions under load," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Rutger Hermsen & Bas Ursem & Pieter Rein ten Wolde, 2010. "Combinatorial Gene Regulation Using Auto-Regulation," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    17. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    18. Ariel L Rivas & Mark D Jankowski & Renata Piccinini & Gabriel Leitner & Daniel Schwarz & Kevin L Anderson & Jeanne M Fair & Almira L Hoogesteijn & Wilfried Wolter & Marcelo Chaffer & Shlomo Blum & Tom, 2013. "Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-16, February.
    19. Zhanar Abil & Ana María Restrepo Sierra & Andreea R. Stan & Amélie Châne & Alicia Prado & Miguel Vega & Yannick Rondelez & Christophe Danelon, 2024. "Darwinian Evolution of Self-Replicating DNA in a Synthetic Protocell," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Jing Fan Yang & Thomas A. Berrueta & Allan M. Brooks & Albert Tianxiang Liu & Ge Zhang & David Gonzalez-Medrano & Sungyun Yang & Volodymyr B. Koman & Pavel Chvykov & Lexy N. LeMar & Marc Z. Miskin & T, 2022. "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54197-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.