IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30424-2.html
   My bibliography  Save this article

Memory, switches, and an OR-port through bistability in chemically fueled crystals

Author

Listed:
  • Fabian Schnitter

    (Technical University of Munich)

  • Benedikt Rieß

    (Technical University of Munich)

  • Christian Jandl

    (Technical University of Munich)

  • Job Boekhoven

    (Technical University of Munich
    Technical University of Munich)

Abstract

The ability to store information in chemical reaction networks is essential for the complex behavior we associate with life. In biology, cellular memory is regulated through transcriptional states that are bistable, i.e., a state that can either be on or off and can be flipped from one to another through a transient signal. Such memory circuits have been realized synthetically through the rewiring of genetic systems in vivo or through the rational design of reaction networks based on DNA and highly evolved enzymes in vitro. Completely bottom-up analogs based on small molecules are rare and hard to design and thus represent a challenge for systems chemistry. In this work, we show that bistability can be designed from a simple non-equilibrium reaction cycle that is coupled to crystallization. The crystals exert the necessary feedback on the reaction cycle required for the bistability resulting in an on-state with assemblies and an off-state without. Each state represents volatile memory that can be stored in continuously stirred tank reactors indefinitely even though molecules are turned over on a minute-timescale. We showcase the system’s abilities by creating a matrix display that can store images and by creating an OR-gate by coupling several switches together.

Suggested Citation

  • Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30424-2
    DOI: 10.1038/s41467-022-30424-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30424-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30424-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ignacio Colomer & Sarah M. Morrow & Stephen P. Fletcher, 2018. "A transient self-assembling self-replicator," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    2. Indrajit Maity & Nathaniel Wagner & Rakesh Mukherjee & Dharm Dev & Enrique Peacock-Lopez & Rivka Cohen-Luria & Gonen Ashkenasy, 2019. "A chemically fueled non-enzymatic bistable network," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Alexander I. Novichkov & Anton I. Hanopolskyi & Xiaoming Miao & Linda J. W. Shimon & Yael Diskin-Posner & Sergey N. Semenov, 2021. "Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Marta Tena-Solsona & Benedikt Rieß & Raphael K. Grötsch & Franziska C. Löhrer & Caren Wanzke & Benjamin Käsdorf & Andreas R. Bausch & Peter Müller-Buschbaum & Oliver Lieleg & Job Boekhoven, 2017. "Non-equilibrium dissipative supramolecular materials with a tunable lifetime," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    5. Kevin Montagne & Guillaume Gines & Teruo Fujii & Yannick Rondelez, 2016. "Boosting functionality of synthetic DNA circuits with tailored deactivation," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    6. Juan Manuel Parrilla-Gutierrez & Abhishek Sharma & Soichiro Tsuda & Geoffrey J. T. Cooper & Gerardo Aragon-Camarasa & Kevin Donkers & Leroy Cronin, 2020. "A programmable chemical computer with memory and pattern recognition," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    7. Sergey N. Semenov & Lewis J. Kraft & Alar Ainla & Mengxia Zhao & Mostafa Baghbanzadeh & Victoria E. Campbell & Kyungtae Kang & Jerome M. Fox & George M. Whitesides, 2016. "Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions," Nature, Nature, vol. 537(7622), pages 656-660, September.
    8. Swati Krishnan & Daniela Ziegler & Vera Arnaut & Thomas G. Martin & Korbinian Kapsner & Katharina Henneberg & Andreas R. Bausch & Hendrik Dietz & Friedrich C. Simmel, 2016. "Molecular transport through large-diameter DNA nanopores," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Zhen & Adam, Zachary R., 2024. "Two mechanisms for the spontaneous emergence, execution, and reprogramming of chemical logic circuits," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitrii V. Kriukov & Jurriaan Huskens & Albert S. Y. Wong, 2024. "Exploring the programmability of autocatalytic chemical reaction networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Benjamin Klemm & Reece W. Lewis & Irene Piergentili & Rienk Eelkema, 2022. "Temporally programmed polymer – solvent interactions using a chemical reaction network," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Xiuxiu Li & Polina Fomitskaya & Viktoryia A. Smaliak & Barbara S. Smith & Ekaterina V. Skorb & Sergey N. Semenov, 2024. "Selenium catalysis enables negative feedback organic oscillators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Simone M. Poprawa & Michele Stasi & Brigitte A. K. Kriebisch & Monika Wenisch & Judit Sastre & Job Boekhoven, 2024. "Active droplets through enzyme-free, dynamic phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Maćešić, Stevan & Čupić, Željko & Kolar-Anić, Ljiljana, 2023. "Effect of diffusion on steady state stability of an oscillatory reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Peng, Zhen & Adam, Zachary R., 2024. "Two mechanisms for the spontaneous emergence, execution, and reprogramming of chemical logic circuits," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Jianxin Yang & Tianle Pan & Zhenming Xie & Wu Yuan & Ho-Pui Ho, 2024. "In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Adrian Zambrano & Giorgio Fracasso & Mengfei Gao & Martina Ugrinic & Dishi Wang & Dietmar Appelhans & Andrew deMello & T-Y. Dora Tang, 2022. "Programmable synthetic cell networks regulated by tuneable reaction rates," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Xiaoming Liu & Fengyu Liu & Hemani Chhabra & Christopher Maffeo & Zhuo Chen & Qiang Huang & Aleksei Aksimentiev & Tatsuo Arai, 2024. "A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xianhua Lang & Yingjie Huang & Lirong He & Yixi Wang & Udayabhaskararao Thumu & Zonglin Chu & Wilhelm T. S. Huck & Hui Zhao, 2023. "Mechanosensitive non-equilibrium supramolecular polymerization in closed chemical systems," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Keisuke Nakamura & Ryou Kubota & Takuma Aoyama & Kenji Urayama & Itaru Hamachi, 2023. "Four distinct network patterns of supramolecular/polymer composite hydrogels controlled by formation kinetics and interfiber interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Hyowon Jang & Jayeon Song & Sunjoo Kim & Jung-Hyun Byun & Kyoung G. Lee & Kwang-Hyun Park & Euijeon Woo & Eun-Kyung Lim & Juyeon Jung & Taejoon Kang, 2023. "ANCA: artificial nucleic acid circuit with argonaute protein for one-step isothermal detection of antibiotic-resistant bacteria," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Ahmed A. Agiza & Kady Oakley & Jacob K. Rosenstein & Brenda M. Rubenstein & Eunsuk Kim & Marc Riedel & Sherief Reda, 2023. "Digital circuits and neural networks based on acid-base chemistry implemented by robotic fluid handling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Jianbang Wang & Zhenzhen Li & Itamar Willner, 2022. "Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Abhishek Sharma & Marcus Tze-Kiat Ng & Juan Manuel Parrilla Gutierrez & Yibin Jiang & Leroy Cronin, 2024. "A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Zhanar Abil & Ana María Restrepo Sierra & Andreea R. Stan & Amélie Châne & Alicia Prado & Miguel Vega & Yannick Rondelez & Christophe Danelon, 2024. "Darwinian Evolution of Self-Replicating DNA in a Synthetic Protocell," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Karimov, Artur & Kopets, Ekaterina & Karimov, Timur & Almjasheva, Oksana & Arlyapov, Viacheslav & Butusov, Denis, 2023. "Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    20. Katya Ahmad & Abid Javed & Conor Lanphere & Peter V. Coveney & Elena V. Orlova & Stefan Howorka, 2023. "Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30424-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.