Selenium catalysis enables negative feedback organic oscillators
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-47714-6
Download full text from publisher
References listed on IDEAS
- Ximin He & Michael Aizenberg & Olga Kuksenok & Lauren D. Zarzar & Ankita Shastri & Anna C. Balazs & Joanna Aizenberg, 2012. "Synthetic homeostatic materials with chemo-mechano-chemical self-regulation," Nature, Nature, vol. 487(7406), pages 214-218, July.
- Alexander I. Novichkov & Anton I. Hanopolskyi & Xiaoming Miao & Linda J. W. Shimon & Yael Diskin-Posner & Sergey N. Semenov, 2021. "Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Matthijs Harmsel & Oliver R. Maguire & Sofiya A. Runikhina & Albert S. Y. Wong & Wilhelm T. S. Huck & Syuzanna R. Harutyunyan, 2023. "A catalytically active oscillator made from small organic molecules," Nature, Nature, vol. 621(7977), pages 87-93, September.
- Sergey N. Semenov & Lewis J. Kraft & Alar Ainla & Mengxia Zhao & Mostafa Baghbanzadeh & Victoria E. Campbell & Kyungtae Kang & Jerome M. Fox & George M. Whitesides, 2016. "Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions," Nature, Nature, vol. 537(7622), pages 656-660, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dmitrii V. Kriukov & Jurriaan Huskens & Albert S. Y. Wong, 2024. "Exploring the programmability of autocatalytic chemical reaction networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Thomas B. H. Schroeder & Joanna Aizenberg, 2022. "Patterned crystal growth and heat wave generation in hydrogels," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Jing Fan Yang & Thomas A. Berrueta & Allan M. Brooks & Albert Tianxiang Liu & Ge Zhang & David Gonzalez-Medrano & Sungyun Yang & Volodymyr B. Koman & Pavel Chvykov & Lexy N. LeMar & Marc Z. Miskin & T, 2022. "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47714-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.