IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i4p1055-1066.html
   My bibliography  Save this article

Effects of positive electrical feedback in the oscillating Belousov–Zhabotinsky reaction: Experiments and simulations

Author

Listed:
  • Sriram, K.

Abstract

This paper describes both the experimental and numerical investigations on the effect of positive electrical feedback in the oscillating Belovsou–Zhabotinsky (BZ) reaction under batch conditions. Positive electrical feedback causes an increase in the amplitude and period of the oscillations with the corresponding increase of the feedback strength. Oregonator model with a positive feedback term suitably incorporated in one of the dynamical variables is used to account for these experimental observations. Further, the effect of positive feedback on the Hopf points are investigated numerically by constructing the bifurcation diagrams. In the absence of feedback, for a particular stoichiometric parameter, the model exhibits both supercritical and subcritical Hopf bifurcations with canard existing near the former Hopf point. In the presence of positive feedback it is observed that (i) both the Hopf points advances, (ii) the distance between the two Hopf points decreases linearly, while the period increases exponentially with the increase of feedback strength near the Hopf points, (iii) only supercritical Hopf point without canard survives for a very strong positive feedback strength and (iv) moderate feedback strength takes the system away from limit cycle to the canard regime. These observations are explained in terms of Field–Körös–Noyes mechanism of the Belousov–Zhabotinsky reaction. This may be the first instance where the advancement of Hopf points due to positive feedback is clearly shown.

Suggested Citation

  • Sriram, K., 2006. "Effects of positive electrical feedback in the oscillating Belousov–Zhabotinsky reaction: Experiments and simulations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1055-1066.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:4:p:1055-1066
    DOI: 10.1016/j.chaos.2005.08.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905007587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Freeman, 2000. "Feedback control of intercellular signalling in development," Nature, Nature, vol. 408(6810), pages 313-319, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Jun & Jia, Ya & Yi, Ming & Tang, Jun & Xia, Ya-Feng, 2009. "Suppression of spiral wave and turbulence by using amplitude restriction of variable in a local square area," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1331-1339.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    2. Jens Grauer & Falko Schmidt & Jesús Pineda & Benjamin Midtvedt & Hartmut Löwen & Giovanni Volpe & Benno Liebchen, 2021. "Active droploids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Antara Reja & Sangam Jha & Ashley Sreejan & Sumit Pal & Subhajit Bal & Chetan Gadgil & Dibyendu Das, 2024. "Feedback driven autonomous cycles of assembly and disassembly from minimal building blocks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Rutger Hermsen & Bas Ursem & Pieter Rein ten Wolde, 2010. "Combinatorial Gene Regulation Using Auto-Regulation," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    5. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    6. Ariel L Rivas & Mark D Jankowski & Renata Piccinini & Gabriel Leitner & Daniel Schwarz & Kevin L Anderson & Jeanne M Fair & Almira L Hoogesteijn & Wilfried Wolter & Marcelo Chaffer & Shlomo Blum & Tom, 2013. "Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-16, February.
    7. Hui Zhang & Yueling Chen & Yong Chen, 2012. "Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    8. Merav Socolovsky & Michael Murrell & Ying Liu & Ramona Pop & Ermelinda Porpiglia & Andre Levchenko, 2007. "Negative Autoregulation by FAS Mediates Robust Fetal Erythropoiesis," PLOS Biology, Public Library of Science, vol. 5(10), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:4:p:1055-1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.