IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35285-3.html
   My bibliography  Save this article

A high-fidelity quantum matter-link between ion-trap microchip modules

Author

Listed:
  • M. Akhtar

    (University of Sussex
    Universal Quantum Ltd)

  • F. Bonus

    (Universal Quantum Ltd
    University College London)

  • F. R. Lebrun-Gallagher

    (University of Sussex
    Universal Quantum Ltd)

  • N. I. Johnson

    (University of Sussex)

  • M. Siegele-Brown

    (University of Sussex)

  • S. Hong

    (University of Sussex)

  • S. J. Hile

    (University of Sussex)

  • S. A. Kulmiya

    (University of Sussex
    University of Bristol)

  • S. Weidt

    (University of Sussex
    Universal Quantum Ltd)

  • W. K. Hensinger

    (University of Sussex
    Universal Quantum Ltd)

Abstract

System scalability is fundamental for large-scale quantum computers (QCs) and is being pursued over a variety of hardware platforms. For QCs based on trapped ions, architectures such as the quantum charge-coupled device (QCCD) are used to scale the number of qubits on a single device. However, the number of ions that can be hosted on a single quantum computing module is limited by the size of the chip being used. Therefore, a modular approach is of critical importance and requires quantum connections between individual modules. Here, we present the demonstration of a quantum matter-link in which ion qubits are transferred between adjacent QC modules. Ion transport between adjacent modules is realised at a rate of 2424 s−1 and with an infidelity associated with ion loss during transport below 7 × 10−8. Furthermore, we show that the link does not measurably impact the phase coherence of the qubit. The quantum matter-link constitutes a practical mechanism for the interconnection of QCCD devices. Our work will facilitate the implementation of modular QCs capable of fault-tolerant utility-scale quantum computation.

Suggested Citation

  • M. Akhtar & F. Bonus & F. R. Lebrun-Gallagher & N. I. Johnson & M. Siegele-Brown & S. Hong & S. J. Hile & S. A. Kulmiya & S. Weidt & W. K. Hensinger, 2023. "A high-fidelity quantum matter-link between ion-trap microchip modules," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35285-3
    DOI: 10.1038/s41467-022-35285-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35285-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35285-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. M. Pino & J. M. Dreiling & C. Figgatt & J. P. Gaebler & S. A. Moses & M. S. Allman & C. H. Baldwin & M. Foss-Feig & D. Hayes & K. Mayer & C. Ryan-Anderson & B. Neyenhuis, 2021. "Demonstration of the trapped-ion quantum CCD computer architecture," Nature, Nature, vol. 592(7853), pages 209-213, April.
    2. Laird Egan & Dripto M. Debroy & Crystal Noel & Andrew Risinger & Daiwei Zhu & Debopriyo Biswas & Michael Newman & Muyuan Li & Kenneth R. Brown & Marko Cetina & Christopher Monroe, 2021. "Fault-tolerant control of an error-corrected qubit," Nature, Nature, vol. 598(7880), pages 281-286, October.
    3. D. Kielpinski & C. Monroe & D. J. Wineland, 2002. "Architecture for a large-scale ion-trap quantum computer," Nature, Nature, vol. 417(6890), pages 709-711, June.
    4. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. K. Wright & K. M. Beck & S. Debnath & J. M. Amini & Y. Nam & N. Grzesiak & J.-S. Chen & N. C. Pisenti & M. Chmielewski & C. Collins & K. M. Hudek & J. Mizrahi & J. D. Wong-Campos & S. Allen & J. Apisd, 2019. "Benchmarking an 11-qubit quantum computer," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    6. Pengfei Wang & Chun-Yang Luan & Mu Qiao & Mark Um & Junhua Zhang & Ye Wang & Xiao Yuan & Mile Gu & Jingning Zhang & Kihwan Kim, 2021. "Single ion qubit with estimated coherence time exceeding one hour," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Wang & Hyukjoon Kwon & Chun-Yang Luan & Wentao Chen & Mu Qiao & Zinan Zhou & Kaizhao Wang & M. S. Kim & Kihwan Kim, 2024. "Snapshotting quantum dynamics at multiple time points," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. L. Feng & Y.-Y. Huang & Y.-K. Wu & W.-X. Guo & J.-Y. Ma & H.-X. Yang & L. Zhang & Y. Wang & C.-X. Huang & C. Zhang & L. Yao & B.-X. Qi & Y.-F. Pu & Z.-C. Zhou & L.-M. Duan, 2024. "Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Grigory E. Astrakharchik & Luis A. Peña Ardila & Krzysztof Jachymski & Antonio Negretti, 2023. "Many-body bound states and induced interactions of charged impurities in a bosonic bath," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Haokun Luo & Yunxuan Wei & Georgios G. Pyrialakos & Mercedeh Khajavikhan & Demetrios N. Christodoulides, 2024. "Guiding charged particles in vacuum via Lagrange points," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Joonhyuk Kwon & William J. Setzer & Michael Gehl & Nicholas Karl & Jay Van Der Wall & Ryan Law & Matthew G. Blain & Daniel Stick & Hayden J. McGuinness, 2024. "Multi-site integrated optical addressing of trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Spencer D. Fallek & Vikram S. Sandhu & Ryan A. McGill & John M. Gray & Holly N. Tinkey & Craig R. Clark & Kenton R. Brown, 2024. "Rapid exchange cooling with trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Sainath Motlakunta & Nikhil Kotibhaskar & Chung-You Shih & Anthony Vogliano & Darian McLaren & Lewis Hahn & Jingwen Zhu & Roland Hablützel & Rajibul Islam, 2024. "Preserving a qubit during state-destroying operations on an adjacent qubit at a few micrometers distance," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, January.
    10. Ziqian Li & Tanay Roy & David Rodríguez Pérez & Kan-Heng Lee & Eliot Kapit & David I. Schuster, 2024. "Autonomous error correction of a single logical qubit using two transmons," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    11. Neereja Sundaresan & Theodore J. Yoder & Youngseok Kim & Muyuan Li & Edward H. Chen & Grace Harper & Ted Thorbeck & Andrew W. Cross & Antonio D. Córcoles & Maika Takita, 2023. "Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. M.-L. Cai & Y.-K. Wu & Q.-X. Mei & W.-D. Zhao & Y. Jiang & L. Yao & L. He & Z.-C. Zhou & L.-M. Duan, 2022. "Observation of supersymmetry and its spontaneous breaking in a trapped ion quantum simulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. María José Viana Cleves & Gerardo Barbosa Castillo & Andrés Rolando Ciro Gómez & Édgar Solano González, 2022. "Líneas estructurales para la Fuerza Pública: medioambiente e inteligencia militar," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1330.
    14. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Liang Xiang & Wenjie Jiang & Zehang Bao & Zixuan Song & Shibo Xu & Ke Wang & Jiachen Chen & Feitong Jin & Xuhao Zhu & Zitian Zhu & Fanhao Shen & Ning Wang & Chuanyu Zhang & Yaozu Wu & Yiren Zou & Jiar, 2024. "Long-lived topological time-crystalline order on a quantum processor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Kurowski, Krzysztof & Pecyna, Tomasz & Slysz, Mateusz & Różycki, Rafał & Waligóra, Grzegorz & Wȩglarz, Jan, 2023. "Application of quantum approximate optimization algorithm to job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 310(2), pages 518-528.
    17. Fangjun Hu & Saeed A. Khan & Nicholas T. Bronn & Gerasimos Angelatos & Graham E. Rowlands & Guilhem J. Ribeill & Hakan E. Türeci, 2024. "Overcoming the coherence time barrier in quantum machine learning on temporal data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. D. Zhu & Z. P. Cian & C. Noel & A. Risinger & D. Biswas & L. Egan & Y. Zhu & A. M. Green & C. Huerta Alderete & N. H. Nguyen & Q. Wang & A. Maksymov & Y. Nam & M. Cetina & N. M. Linke & M. Hafezi & C., 2022. "Cross-platform comparison of arbitrary quantum states," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Junyu Liu & Minzhao Liu & Jin-Peng Liu & Ziyu Ye & Yunfei Wang & Yuri Alexeev & Jens Eisert & Liang Jiang, 2024. "Towards provably efficient quantum algorithms for large-scale machine-learning models," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35285-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.