IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7721d10.1038_s41586-018-0450-2.html
   My bibliography  Save this article

Synthetic three-dimensional atomic structures assembled atom by atom

Author

Listed:
  • Daniel Barredo

    (Institut d’Optique Graduate School, CNRS, Université Paris-Saclay)

  • Vincent Lienhard

    (Institut d’Optique Graduate School, CNRS, Université Paris-Saclay)

  • Sylvain Léséleuc

    (Institut d’Optique Graduate School, CNRS, Université Paris-Saclay)

  • Thierry Lahaye

    (Institut d’Optique Graduate School, CNRS, Université Paris-Saclay)

  • Antoine Browaeys

    (Institut d’Optique Graduate School, CNRS, Université Paris-Saclay)

Abstract

A great challenge in current quantum science and technology research is to realize artificial systems of a large number of individually controlled quantum bits for applications in quantum computing and quantum simulation. Many experimental platforms are being explored, including solid-state systems, such as superconducting circuits1 or quantum dots2, and atomic, molecular and optical systems, such as photons, trapped ions or neutral atoms3–7. The latter offer inherently identical qubits that are well decoupled from the environment and could provide synthetic structures scalable to hundreds of qubits or more8. Quantum-gas microscopes9 allow the realization of two-dimensional regular lattices of hundreds of atoms, and large, fully loaded arrays of about 50 microtraps (or ‘optical tweezers’) with individual control are already available in one10 and two11 dimensions. Ultimately, however, accessing the third dimension while keeping single-atom control will be required, both for scaling to large numbers and for extending the range of models amenable to quantum simulation. Here we report the assembly of defect-free, arbitrarily shaped three-dimensional arrays, containing up to 72 single atoms. We use holographic methods and fast, programmable moving tweezers to arrange—atom by atom and plane by plane—initially disordered arrays into target structures of almost any geometry. These results present the prospect of quantum simulation with tens of qubits arbitrarily arranged in space and show that realizing systems of hundreds of individually controlled qubits is within reach using current technology.

Suggested Citation

  • Daniel Barredo & Vincent Lienhard & Sylvain Léséleuc & Thierry Lahaye & Antoine Browaeys, 2018. "Synthetic three-dimensional atomic structures assembled atom by atom," Nature, Nature, vol. 561(7721), pages 79-82, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7721:d:10.1038_s41586-018-0450-2
    DOI: 10.1038/s41586-018-0450-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0450-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0450-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katrina Barnes & Peter Battaglino & Benjamin J. Bloom & Kayleigh Cassella & Robin Coxe & Nicole Crisosto & Jonathan P. King & Stanimir S. Kondov & Krish Kotru & Stuart C. Larsen & Joseph Lauigan & Bri, 2022. "Assembly and coherent control of a register of nuclear spin qubits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Matthew J. O’Rourke & Garnet Kin-Lic Chan, 2023. "Entanglement in the quantum phases of an unfrustrated Rydberg atom array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yong-zhuang Zhou & Man-chao Zhang & Wen-bo Su & Chun-wang Wu & Yi Xie & Ting Chen & Wei Wu & Ping-xing Chen & Jie Zhang, 2024. "Tracking the extensive three-dimensional motion of single ions by an engineered point-spread function," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Giacomo Bighin & Tilman Enss & Nicolò Defenu, 2024. "Universal scaling in real dimension," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7721:d:10.1038_s41586-018-0450-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.